

Lecture Notes in Computer Science 4915
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Andy King (Ed.)

Logic-Based
Program Synthesis
and Transformation

17th International Symposium, LOPSTR 2007
Kongens Lyngby, Denmark, August 23-24, 2007
Revised Selected Papers

13

Volume Editor

Andy King
Computing Laboratory
University of Kent
Canterbury, UK
E-mail: a.m.king@kent.ac.uk

Library of Congress Control Number: 2008922726

CR Subject Classification (1998): F.3.1, D.1.1, D.1.6, D.2.4, I.2.2, F.4.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-78768-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-78768-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12245710 06/3180 5 4 3 2 1 0

Preface

This volume contains a selection of the the papers presented at the 17th Interna-
tional Symposium on Logic-Based Program Synthesis and Transformation, that
was held in Kongens Lyngby, Denmark, August 23–24, 2007. Previous LOPSTR
symposia were held in Venice (2007 and 1999), London (2005 and 2000), Verona
(2004), Uppsala (2003), Madrid (2002), Paphos (2001), Manchester (1998, 1992
and 1991), Leuven (1997), Stockholm (1996), Arhhem (1995), Pisa (1994) and
Louvain-la-Neuve (1993).

The aim of the LOPSTR series is to stimulate and promote international
research and collaboration on logic-based program development. LOPSTR thus
traditionally solicits papers in the areas of: specification, synthesis, verification,
transformation, analysis, optimization, composition, security, reuse, applications
and tools, component-based software development, software architectures, agent-
based software development and program refinement. Formal proceedings are
produced only after the symposium, so that authors can incorporate this feed-
back in the published papers. Thirty submissions were received and each pa-
per, in turn, received at least three reviews. The Committee decided to accept
seven full papers for presentation and for immediate inclusion in the final post-
conference proceedings. Nine extended abstracts were also selected for presen-
tation, of which six papers were accepted for publication in this volume, after
revision and another round of reviewing. Michael Codish contributed a paper to
the proceedings to accompany his invited talk.

I am very grateful to the Program Committee and the reviewers for their in-
valuable help and expertise. The Steering Committee and, in particular Germán
Puebla, generously shared their experience. I would like to thank Andrei Voronkov
for his excellent EasyChair paper submission and reviewing system; Michael
Hanus for his guidance in using EasyChair; and Andreas Matthias for his pdf-
pages LATEX package which simplified the production of the pre-conference
LOPSTR proceedings.

LOPSTR 2007 was co-located with SAS 2007 and my warmest thanks go
to Christian W. Probst (Local Chair), who was always willing to help in every
aspect of the organization of LOPSTR 2007. Special thanks also go Hanne Riis
Nielson, Flemming Nielson (Treasurer), Sebastian Nanz, Terkel K. Tolstrup, Eva
Bing, and Elsebeth Strøm, who, together with Christian, took care of the overall
planning and local organization of LOPSTR 2007.

December 2007 Andy King

Organization

Program Committee

Elvira Albert Universidad Complutense Madrid, Spain
John Gallagher University of Roskilde, Denmark
Michael Hanus Christian-Albrechts-Universität zu Kiel, Germany
Jacob Howe City University, UK
Andy King (Program Chair) University of Kent, UK
Michael Leuschel Heinrich-Heine-Universität Düsseldorf, Germany
Mario Ornaghi Università degli Studi di Milano, Italy
Étienne Payet Université de La Réunion, France
Alberto Pettorossi Università di Roma Tor Vergata, Italy
Carla Piazza Università degli Studi di Udine, Italy
C. R. Ramakrishnan SUNY Stony Brook, USA
Abhik Roychoudhury National University of Singapore, Singapore
Peter Schneider-Kamp RWTH Aachen, Germany
Alexander Serebrenik (Publicity Chair) Technische Universiteit Eindhoven
Josep Silva Technical University of Valencia, Spain
Wim Vanhoof University of Namur, Belgium

Steering Committee

Alberto Pettorossi Università di Roma Tor Vergata, Italy
Michael Leuschel Heinrich-Heine-Universität Düsseldorf, Germany
Maurice Bruynooghe Katholieke Universiteit Leuven, Belgium
Sandro Etalle Universiteit Twente, Netherlands
Patricia Hill University of Leeds, UK
German Puebla Technical University of Madrid, Spain
Andy King University of Kent, UK

Local Organization Committee

Christian W. Probst (Local Chair) Technical University of Denmark
Sebastian Nanz Technical University of Denmark
Terkel K. Tolstrup Technical University of Denmark
Eva Bing Technical University of Denmark
Elsebeth Strøm Technical University of Denmark
Hanne Riis Nielson Technical University of Denmark
Flemming Nielson (Treasurer) Technical University of Denmark

VIII Organization

Additional Referees

Slim Abdennadher
Armin Biere
Davide Bresolin
Maurice Bruynooghe
Manuel Carro
Alberto Casagrande
Agostino Dovier
Camillo Fiorentini
Andrea Formisano
Ankit Goel
Gopal Gupta
Frank Huch

Lunjin Lu
Salvador Lucas
Fred Mesnard
Eric Monfroy
José Morales
Rafael Navarro
Alessandro Dal Palu’
David Pearce
Maurizio Proietti
Arend Rensink
Jaime Sanchez
Beata Sarna-Starosta

Valerio Senni
Andrew Sentosa
Jaroslav Sevcik
Axel Simon
Jan-Georg Smaus
Fausto Spoto
German Vidal
Marc Voorhoeve
Tao Wang
Jan Martijn van der Werf

Table of Contents

Program Termination

Proving Termination with (Boolean) Satisfaction . 1
Michael Codish

Termination Analysis of Logic Programs Based on Dependency
Graphs . 8

Manh Thang Nguyen, Jürgen Giesl, Peter Schneider-Kamp, and
Danny De Schreye

Type-Based Homeomorphic Embedding and Its Applications to Online
Partial Evaluation . 23

Elvira Albert, John Gallagher, Miguel Gómez-Zamalloa, and
Germán Puebla

Program Transformation

Towards a Normal Form for Mercury Programs . 43
François Degrave and Wim Vanhoof

Aggregates for CHR through Program Transformation 59
Peter Van Weert, Jon Sneyers, and Bart Demoen

Preserving Sharing in the Partial Evaluation of Lazy Functional
Programs . 74

Sebastian Fischer, Josep Silva, Salvador Tamarit, and Germán Vidal

Denotation by Transformation: Towards Obtaining a Denotational
Semantics by Transformation to Point-Free Style . 90

Bernd Braßel and Jan Christiansen

Constraint Solving and Analysis

Generation of Rule-Based Constraint Solvers: Combined Approach 106
Slim Abdennadher and Ingi Sobhi

A Scalable Inclusion Constraint Solver Using Unification 121
Ye Zhang and Flemming Nielson

Annotation Algorithms for Unrestricted Independent And-Parallelism
in Logic Programs . 138

Amadeo Casas, Manuel Carro, and Manuel V. Hermenegildo

X Table of Contents

A Flexible, (C)LP-Based Approach to the Analysis of Object-Oriented
Programs . 154

Mario Méndez-Lojo, Jorge Navas, and Manuel V. Hermenegildo

Software Engineering

Snapshot Generation in a Constructive Object-Oriented Modeling
Language . 169

Mauro Ferrari, Camillo Fiorentini, Alberto Momigliano, and
Mario Ornaghi

Synthesis of Data Views for Communicating Processes 185
Iman Poernomo

Action Refinement in Process Algebra and Security Issues 201
Annalisa Bossi, Carla Piazza, and Sabina Rossi

Author Index . 219

Proving Termination with

(Boolean) Satisfaction

Michael Codish�

Department of Computer Science
Ben-Gurion University of the Negev

Beer-Sheva, Israel
mcodish@cs.bgu.ac.il

1 Introduction

At some point there was the Davis-Putnam-Logemann-Loveland (DPLL) algo-
rithm [6]. Forty five years later, research on Boolean satisfiability (SAT) is still
ceaselessly generating even better SAT solvers capable of handling even larger
SAT instances. Remarkably, the majority of these tools still bear the hallmark
of the DPLL algorithm. In sync with the availability of progressively stronger
SAT solvers is an accumulating number of applications which demonstrate that
real world problems can often be solved by encoding them into SAT. When suc-
cessful, this circumvents the need to redevelop complex search algorithms from
scratch.

This presentation is about the application of Boolean SAT solvers to the
problem of determining program termination. Proving termination is all about
the search for suitable ranking functions. The key idea in this work is to encode
the search for particular forms of ranking functions to Boolean statements which
are satisfiable if and only if such ranking functions exist. In this way, proving
termination can be performed using a state-of-the-art Boolean satisfaction solver.

2 Encoding Lexicographic Path Orders

In [3] we describe a propositional encoding for lexicographic path orders (LPOs)
[15,8] and the corresponding LPO-termination property of term rewrite systems.
In brief, a term rewrite system (TRS) is a set of rules of the form � → r where
� and r are terms constructed from given sets of symbols and variables. A lexi-
cographic path order is an order �lpo on terms, induced from a partial order >
on the symbols occurring in the terms (a so-called precedence). A term rewrite
system is LPO-terminating if and only if there exists a partial order on the sym-
bols such that the induced LPO orients all of the rules in the system. Namely
such that � �lpo r for each rule � → r.

There are two variants of LPO-termination: “strict” and “quasi” depending
on if we restrict the precedence to be strict or not. Both imply termination of

� Supported by the Frankel Center for Computer Sciences at Ben-Gurion University.

King, A. (Ed.): LOPSTR 2007, LNCS 4915, pp. 1–7, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 M. Codish

the corresponding term rewrite system. Quasi-LPO-termination is typically the
harder problem as the search for a non-strict precedence is more extensive than
that for a strict precedence. Both of the corresponding decision problems, strict-
and quasi- LPO-termination, are decidable and NP complete [16].

We encode an LPO-termination problem to SAT in two steps: first, a partial
order constraint on the symbols in the system is derived; then this constraint is
solved through an encoding to SAT obtained by viewing each symbol as an inte-
ger value corresponding to its index in the partial order. Partial order constraints
are propositional formula in which the atoms are statements about a partial or-
der on a finite set of symbols and can be seen as an instance of the more general
formulae of separation logic (sometimes called difference logic) described in [23].

Consider an example. To orient a rule not(or(A, B)) → and(not(A), not(B)),
is reduced to solving the following partial order constraint on the symbols
{or, and, not}:

((or > and) ∧ (or > not)) ∨ (not > and).

We encode each of the three symbols as an integer in two bits, and each atom
in the partial order constraint as a comparison on a pair of integers in bit repre-
sentation. For instance, numbering the bits with subscripts on the symbols, the
encoding of the atom (or > and) works out to:

(((or[2] ∧ ¬and[2]
︸ ︷︷ ︸

or[2]>and[2]

) ∨ (or[2] ↔ and[2]
︸ ︷︷ ︸

or[2]=and[2]

∧ or[1] ∧ ¬and[1]
︸ ︷︷ ︸

or[1]>and[1]

))

The experimental results presented in [3] are unequivocal. Our SAT based
implementation of LPO-termination surpasses in orders of magnitude the per-
formance of previous implementations such as those provided at the time by the
termination proving tools TTT [13] and AProVE [12].

3 Encoding Argument Filterings

Lexicographic path orders on their own are too weak for many interesting ter-
mination problems and hence are typically combined with more sophisticated
termination proving techniques. One of the most popular and powerful such
techniques is the dependency pair (DP) method [1]. A main advantage is that
this allows the application of argument filterings which specify parts of terms
that should be ignored when comparing terms. It can be viewed like this: given
a set of pairs of terms to orient with an LPO, first decide which parts of the
terms to filter away and then orient the filtered pairs in an LPO. The argument
filtering specifies for each function symbol f if subterms of the form f(s1, . . . , sn)
should be collapsed to their ith argument; or if some of the argument positions
should be filtered away. Filtering terms can simplify considerably the partial or-
der constraints that need be solved to find an LPO. However, argument filterings
represent also a severe bottleneck for the automation of dependency pairs, as the
search space for argument filterings is enormous (exponential in the sum of the
arities of the symbols).

Proving Termination with (Boolean) Satisfaction 3

In [5] we introduce a propositional encoding which combines the search for
an LPO with the search for an argument filtering. The key idea is to introduce
a small number of additional Boolean variables: one for each symbol to indicate
if it is collapsed, and one for each argument position of a symbol to indicate
if it is filtered. Then the encoding of LPO is enhanced to consider these new
variables. So, there exist an argument filtering and an LPO which orient a set of
inequalities if and only if the encoding of the inequalities is satisfiable. Moreover,
each model of the encoding corresponds to a suitable argument filtering and a
suitable LPO which orient the inequalities. Once again experimental results [5]
indicate speedups in orders of magnitude.

4 Encoding Recursive Path Orders

In [22] we introduce two additional extensions which together lead to an encoding
of the so-called recursive path order with status (RPO). In the first extension,
the lexicographic path order is extended to consider the lexicographic extension,
not just from left-to-right, but rather with respect to any fixed order. It can be
viewed like this: given a permutation for each symbol in a term rewrite system,
first reorder the arguments of every subterm as prescribed by the permutation
for its root symbol. Then check if the resulting system is LPO-terminating. So,
now to orient a set of rules we seek a partial order on the symbols as well as
permutations for each symbol. For the encoding, we introduce a small number
of additional Boolean variables to represent for each symbol the order its argu-
ments are permuted to. Then the encoding of LPO is enhanced to consider this
order (in terms of these new variables). In the second extension, we consider an
encoding of the the multiset path order (MPO) [7] where term arguments are
compared with the multiset ordering. Also, in this case, with a small number
of additional Boolean variables we can model the multiset order in the encod-
ing. For RPO, each symbol in the system is associated with a status (one more
Boolean variable per symbol in the encoding) indicating if its arguments are to
be compared with a multiset extension or with a lexicographic extension modulo
some permutation. By now the reader will not be surprised that we simply en-
code all of the components for RPO to SAT to obtain an implementation using
a SAT solver. The results presented in [22] again leave no doubt that encoding
to SAT is the way to go.

5 Experimental Results

Throughout this work we have found Prolog a convenient language for express-
ing the various encodings to SAT. Prototype analyzers were written in SWI Pro-
log [25] applying the MiniSAT solver [20] through its Prolog interface described
in [4]. Subsequently the approach has been integrated within the termination
analyzer AProVE [11], using the SAT4J solver [21].

In [22] we report the following results for the various analyses described in this
paper. We tested the implementation on all 865 TRSs from the TPDB [24]. The

4 M. Codish

TPDB is the collection of examples used in the annual International Termination
Competition [19]. The experiments were run under AProVE on a 2.2 GHz AMD
Athlon 64 with a time-out of 60 seconds (as in the International Termination
Competition [19]).

In the table below, the first two rows compare our SAT-based approach for
application of the various path orders to the previous dedicated solvers for path
orders in AProVE 1.2 which did not use SAT solving. The last two rows give a
similar comparison for the path orders in combination with the dependency pairs
method and argument filterings. The columns contain the data for LPO with
strict and non-strict precedence (denoted lpo/qlpo), for LPO with permutations
(lpos/qlpos), for MPO (mpo/qmpo), and for RPO with status (rpo/qrpo). For
each encoding we give the number of TRSs which could be proved terminating
(with the number of time-outs in brackets) and the analysis time (in seconds)
for the full collection (including time-outs). For the SAT based implementation,
checking the full collection of 865 TRSs for strict-RPO termination with ar-
gument filterings requires about 100 seconds. Allowing non-strict orders takes
about 3 times longer.

Solver lpo qlpo lpos qlpos mpo qmpo rpo qrpo

1 SAT-based 123 (0) 127 (0) 141 (0) 155 (0) 92 (0) 98 (0) 146 (0) 162 (0)
(direct) 31.0 44.7 26.1 40.6 49.4 74.2 50.0 85.3

2 dedicated 123 (5) 127(16) 141 (6) 154(45) 92 (7) 98(31) 145(10) 158 (65)
(direct) 334.4 1426.3 460.4 3291.7 653.2 2669.1 908.6 4708.2

3 SAT-based 357 (0) 389 (0) 362 (0) 395 (2) 369 (0) 408 (1) 375 (0) 416 (2)
(arg. filt.) 79.3 199.6 69.0 261.1 110.9 267.8 108.8 331.4

4 dedicated 350(55) 374(79) 355(57) 380(92) 359(69) 391(82) 364(74) 394(102)
(arg. filt.) 4039.6 5469.4 4522.8 6476.5 5169.7 5839.5 5536.6 7186.1

The table shows that with our SAT encodings, performance improves by orders
of magnitude over existing solvers both for direct analysis with path orders and
for the combination of path orders and argument filterings in the DP framework.
Note that without a time-out, this effect would be intensified. By using SAT,
the number of time-outs reduces dramatically from up to 102 to at most 2.
The two remaining SAT examples with time-out have function symbols of high
arity and can only be shown terminating by further sophisticated termination
techniques in addition to RPO. Apart from these two, for SAT, there are only
15 examples that take longer than two seconds and only 3 of these take longer
than 10 seconds. The table also shows that the use of RPO instead of LPO
increases the proving power substantially, while in the SAT-based setting, run-
times increase only mildly.

6 Other SAT Based Termination Analyses

The first encoding of a termination problem into propositional logic is presented
in [17]. The encoding is different than the one we consider and adopts a BDD-
based representation. It does not provide competitive results. However, it makes

Proving Termination with (Boolean) Satisfaction 5

an important step. Another BDD-based encoding, this one for size-change ter-
mination [18], is described in [2]. Here, sets of size change graphs are viewed
as partial order constraints, similar to those considered in this paper for term
rewrite systems.

In the past year, several additional papers [9,10,14,26] have illustrated the
huge potential in applying SAT solvers for other types of termination proving
techniques for term rewrite systems. A common theme in all of these works is to
represent (finite domain) integer variables as binary numbers in bit representa-
tion and to encode arithmetic constraints as Boolean functions on these repre-
sentations. Results indicate uniformly that the SAT based approach to proving
termination is very attractive.

7 Summary

Lexicographic- and multiset- path orders are about lifting a base order on terms
to consider the arguments of terms as sequences or as multisets with corre-
sponding lexicographic or multiset orders. We have introduced a new kind of
propositional encoding for reasoning about termination of term rewrite systems
based on variants of these path orders. Our results have had a direct impact on
the design of several major termination analyzers for term rewrite systems.

Of particular and general interest are the encoding techniques which enable
to refine a search algorithm to consider a property of interest for all subsets of
objects, instead of for the full set of objects; or to check if a property holds
when considering a sequence of objects in any order, instead of in the fixed
left-to-right order. The common theme is to represent with a small number of
additional Boolean variables the large number of cases which need be considered.
For the extensions of LPO-termination considered in this work, the additional
cost in analysis time is minor in comparison to the increase in the size of the
search space.

Acknowledgment. The author has been lucky to work on this research with
friends, old and new. Thankyou coauthors of [3], [5], and [22]: Elena Annov,
Jürgen Giesl, Vitaly Lagoon, Peter Schneider–Kamp, Peter J. Stuckey, and René
Thiemann.

References

1. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theo-
retical Computer Science 236(1-2), 133–178 (2000)

2. Codish, M., Lagoon, V., Schachte, P., Stuckey, P.J.: Size-Change Termination Anal-
ysis in k-Bits. In: Sestoft, P. (ed.) ESOP 2006 and ETAPS 2006. LNCS, vol. 3924,
pp. 230–245. Springer, Heidelberg (2006)

3. Stuckey, P.J., Codish, M., Lagoon, V.: Solving Partial Order Constraints for LPO
Termination. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 4–18. Springer,
Heidelberg (2006)

6 M. Codish

4. Codish, M., Lagoon, V., Stuckey, P.J.: Logic programming with satisfiability. The
Journal of Theory and Practice of Logic Programming 8(1) (2008),
http://arxiv.org/pdf/cs.PL/0702072

5. Codish, M., Schneider-Kamp, P., Lagoon, V., Thiemann, R., Giesl, J.: SAT Solving
for Argument Filterings. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS
(LNAI), vol. 4246, pp. 30–44. Springer, Heidelberg (2006)

6. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962)

7. Dershowitz, N.: Orderings for term-rewriting systems. Theoretical Computer Sci-
ence 17, 279–301 (1982)

8. Dershowitz, N.: Termination of rewriting. Journal of Symbolic Computation 3(1/2),
69–116 (1987)

9. Waldmann, J., Zantema, H., Endrullis, J.: Matrix Interpretations for Proving Ter-
mination of Term Rewriting. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006.
LNCS (LNAI), vol. 4130, pp. 574–588. Springer, Heidelberg (2006)

10. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:
SAT solving for termination analysis with polynomial interpretations. In: Marques-
Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer,
Heidelberg (2007)

11. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer,
Heidelberg (2006)

12. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Automated Termination
Proofs with AProVE. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp.
210–220. Springer, Heidelberg (2004)

13. Middeldorp, A., Hirokawa, N.: Tyrolean Termination Tool. In: Giesl, J. (ed.) RTA
2005. LNCS, vol. 3467, pp. 175–184. Springer, Heidelberg (2005)

14. Waldmann, J., Hofbauer, D.: Termination of String Rewriting with Matrix In-
terpretations. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 328–342.
Springer, Heidelberg (2006)

15. Kamin, S., Levy, J.-J.: Two generalizations of the recursive path ordering. In: De-
partment of Computer Science, University of Illinois, Urbana, IL (viewed December
2005) (1980),
http://www.ens-lyon.fr/LIP/REWRITING/OLD PUBLICATIONS ON TERMINATION

16. Krishnamoorthy, M., Narendran, P.: On recursive path ordering. Theoretical Com-
puter Science 40, 323–328 (1985)

17. Kurihara, M., Kondo, H.: Efficient BDD Encodings for Partial Order Constraints
with Application to Expert Systems in Software Verification. In: Orchard, B., Yang,
C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 827–837. Springer,
Heidelberg (2004)

18. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. ACM SIGPLAN Notices, Proceedings of POPL 2001 36(3), 81–92
(2001)

19. Marché, C., Zantema, H.: The Termination Competition. In: Baader, F. (ed.) RTA
2007. LNCS, vol. 4533, pp. 303–313. Springer, Heidelberg (2007) (To appear)

20. MiniSAT solver. Viewed(December 2005),
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat

21. SAT4J satisfiability library for Java, http://www.sat4j.org

http://arxiv.org/pdf/cs.PL/0702072
http://www.ens-lyon.fr/LIP/REWRITING/OLD_PUBLICATIONS_ON_TERMINATION
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat
http://www.sat4j.org

Proving Termination with (Boolean) Satisfaction 7

22. Schneider-Kamp, P., Thiemann, R., Annov, E., Codish, M., Giesl, J.: Proving Ter-
mination Using Recursive Path Orders and SAT Solving. In: Konev, B., Wolter,
F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 267–282. Springer, Heidelberg
(2007)

23. Talupur, M., Sinha, N., Strichman, O., Pnueli, A.: Range allocation for separation
logic. In: CAV, pp. 148–161 (2004)

24. The termination problem data base, http://www.lri.fr/∼marche/tpdb/
25. Wielemaker, J.: An overview of the SWI-Prolog programming environment. In:

Mesnard, F., Serebenik, A. (eds.) Proceedings of the 13th International Workshop
on Logic Programming Environments, Katholieke Universiteit Leuven. CW 371,
(December 2003) pp. 1–16. (2003)

26. Middeldorp, A., Zankl, H.: Satisfying KBO Constraints. In: Baader, F. (ed.) RTA
2007. LNCS, vol. 4533, pp. 389–403. Springer, Heidelberg (2007)

http://www.lri.fr/~marche/tpdb/

Termination Analysis of Logic Programs Based

on Dependency Graphs

Manh Thang Nguyen1, Jürgen Giesl2, Peter Schneider-Kamp2,
and Danny De Schreye1

1 Department of Computer Science, K. U. Leuven, Belgium
{ManhThang.Nguyen,Danny.DeSchreye}@cs.kuleuven.be

2 LuFG Informatik 2, RWTH Aachen, Germany
{giesl,psk}@informatik.rwth-aachen.de

Abstract. This paper introduces a modular framework for termination
analysis of logic programming. To this end, we adapt the notions of de-
pendency pairs and dependency graphs (which were developed for term
rewriting) to the logic programming domain. The main idea of the ap-
proach is that termination conditions for a program are established based
on the decomposition of its dependency graph into its strongly connected
components. These conditions can then be analysed separately by pos-
sibly different well-founded orders. We propose a constraint-based ap-
proach for automating the framework. Then, for example, termination
techniques based on polynomial interpretations can be plugged in as a
component to generate well-founded orders.

1 Introduction

Termination analysis in logic programming (LP) traditionally aims at proving
that a given logic program terminates w.r.t. a specific set of queries. Termination
proofs are usually done by finding ranking functions that map the states of
the program to a sequence of elements of a well-founded domain such that the
sequence is decreasing w.r.t. the well-founded order of the domain. Practically, it
is sufficient to consider only the states that are involved in loops of the program.

Techniques in termination analysis of LPs can be divided into two groups: the
global versus the local approach [4,6,5,8,10,12,26]. In the global approach, one
wants to find only one ranking function for all loops [8,10,26]. In contrast,
techniques in the local approach apply different ranking functions for differ-
ent loops [4,5,12]. Some automated techniques in the global approach are based
on a constraint-based framework to search for a suitable ranking function. This
is done by first generating a set of symbolic constraints from all termination con-
ditions. Then, a constraint solver is used to solve the set of constraints, yielding
a suitable ranking function for the proof. In the local approach, most techniques
use a given small set of norms, and try to prove that (a combination of) these
norms can be applied for the termination proof of the program. It is unclear at
this stage whether a search for arbitrary norms in the local approach could also
be automated using a constraint-based technique like [10].

King, A. (Ed.): LOPSTR 2007, LNCS 4915, pp. 8–22, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Termination Analysis of Logic Programs Based on Dependency Graphs 9

While the constraint-based global approach is very suitable for automation, it
has some drawbacks. Since it generates the constraints for all termination condi-
tions and solves them at once, it may be very time-consuming, especially for non-
terminating programs. This is because the time for solving a set of constraints
often increases exponentially with its size. Moreover, if a complex well-founded
order is needed for the termination proof (e.g., a lexicographical order), it is
often difficult to find such an order using the constraint-based global approach.

Example 1 (ack). Consider a logic program P computing the Ackermann func-
tion. We used a variant with a predecessor predicate p/2 in order to illustrate
how our technique handles local variables. We want to prove termination of this
program w.r.t. the set of queries S = {ack(t1, t2, t3) | t1 and t2 are ground terms,
t3 is an arbitrary term}.

p(s(X), X).

ack(0, X, s(X)).

ack(X, 0, Z) :− p(X, Y), ack(Y, s(0), Z).

ack(s(X), s(Y), Z) :− ack(s(X), Y, Z′), ack(X, Z′, Z).

Proving termination of this example based on the local approach involves two
ranking functions: The first one measures the size of the first argument and
the other measures the size of the second argument of the predicate ack/3.
However, with the constraint-based global approach, it is impossible to find a
single ranking function for the termination proof (if one is restricted to ranking
functions based on polynomial interpretations). As a matter of fact, both tools
cTI [25] and Polytool [26,27] fail to prove termination of this example.

In addition to the local and global approaches which work directly on logic pro-
grams, there are also several transformational approaches which transform logic
programs to term rewrite systems (TRSs). One of the most recent techniques
in this line of work is [31]. However, as demonstrated in [31], it turned out
that there remain many LPs whose termination can currently only be proved
by tools working with direct approaches. (An example is the “der”-program
from [9,26].) On the other hand, there are also many LPs where currently only
transformational tools succeed (e.g., the example “LP/SGST06-shuffle” from
the Termination Problem Data Base (TPDB) [32] that is used in the annual
International Competition of Termination Tools [24]). The present paper tries
to solve this problem by porting TRS-techniques so that they can be applied
to LPs directly. In this way, we intend to combine the advantages of direct and
transformational approaches. Indeed, a first prototypical implementation shows
that the new approach of the present paper can handle both the examples “der”
and “shuffle” above as well as other examples that could not be handled by any
tool up to now (e.g., “LP/SGST06-snake” from the TPDB).

More precisely, in this paper we introduce a modular framework for termi-
nation analysis of LPs. To this end, the dependency pair technique for termi-
nation analysis of TRSs introduced in [1] is adapted to the LP context. With
this new technique, termination analysis of programs like Ex. 1 can be done by

10 M.T. Nguyen et al.

decomposing it into several simple sub-problems. Each of them can be solved
independently by using any suitable well-founded order.

We also propose a constraint-based approach for automating the approach
in which termination techniques based on polynomial interpretations can be
plugged in as a component to search for well-founded orders.

The paper is organised as follows. In Sect. 2, we provide some preliminaries.
In Sect. 3, we introduce a modular framework for proving termination of LPs
based on dependency graphs. In Sect. 4, we present a constraint-based approach
to automate the framework. Finally, we end with a conclusion in Sect. 5.

2 Preliminaries

A quasi-order on a set S is a reflexive and transitive binary relation � defined
on elements of S. In this paper, we use quasi-orders comparing atoms with each
other and comparing terms with each other. We define the associated equivalence
relation ≈ as s ≈ t iff s � t and t � s. A well-founded order on S is a transitive
relation � where there is no infinite sequence s0 � s1 � . . . with si ∈ S. A
reduction pair (�,�) consists of a quasi-order � and a well-founded order �
that are compatible (i.e., t1 � t2 � t3 implies t1 � t3).1

We assume familiarity with standard notions of logic programs. In the paper,
P denotes a pure logic program and TermP , AtomP denote the sets of terms
and atoms constructed from P respectively. Given an atom A, rel(A) is the
predicate occurring in A. Given two atoms A and B, we denote by mgu(A, B)
their most general unifier. A query Q is a finite sequence of atoms. We consider
termination of P w.r.t. Q using the left-to-right selection rule that is commonly
used in implementations of logic programming.2

Let S be a set of atomic queries. The call set, Call (P, S), is the set of all
atoms A, such that a variant of A is the selected atom in some derivation for
(P, Q), for some Q ∈ S. In this paper, we use ranking functions and reduction
pairs built from norms and level mappings [3]. A norm is a mapping ‖ · ‖ :
TermP → N. A level mapping is a mapping | · | : AtomP → N. An interargument
relation for a predicate p/n is a relation Rp/n = {p(t1, . . . , tn) | ti ∈ TermP ∧
ϕp(t1, . . . , tn)}, where (1) ϕp(t1, . . . , tn) is a formula of an arbitrary boolean
combination of inequalities, and (2) each inequality in ϕp is either si � sj or
si � sj , where si, sj are constructed from t1, . . . , tn by applying function symbols
of P . Rp/n is valid iff for every p(t1, . . . , tn) ∈ AtomP : P |= p(t1, . . . , tn) implies
p(t1, . . . , tn) ∈ Rp/n. A reduction pair (�,�) is rigid on a term or an atom A if

1 In contrast to the definition of “reduction pairs” in term rewriting [21], for the theo-
retical results in Sect. 3 we do not require � and � to be closed under substitutions.
But to automate our method, in Sect. 4 we choose relations � and � that result
from polynomial interpretations and that are closed under substitutions.

2 By fixing the selection rule, methods for termination analysis can exploit this and
become much stronger. This is similar to termination analysis of term rewriting (in
particular, when using dependency pairs). Here, termination of innermost rewriting
is easier to show than termination of full rewriting.

Termination Analysis of Logic Programs Based on Dependency Graphs 11

for all substitutions σ, we have A ≈ Aσ. A reduction pair (�,�) is rigid on a
set of terms or atoms if it is rigid on all its elements.

Example 2 (call set, norm, and level mapping for ack). We again regard the
program P and the set of queries S in Ex. 1. Then we have Call (P, S) =
S ∪ { p(t1, t2) | t1 is a ground term, t2 is a variable }. Consider the reduction
pair (�,�) which is induced3 by a norm ‖0‖ = 0, ‖s(t)‖ = 1 + ‖t‖, ‖X‖ = 0
for all variables X , and by an associated level mapping |p(t1, t2)| = 0 and
|ack(t1, t2, t3)| = ‖t1‖. Thus, we have s(0) � 0, ack(s(0), X, Y) � ack(0, X, Y),
and ack(0, X, Y) ≈ ack(0, 0, 0). Note that (�,�) is rigid on Call (P, S). An exam-
ple for a valid interargument relation w.r.t. (�,�) is Rp/2 = {p(t1, t2) | t1 � t2}.

3 Dependency Graphs in Logic Programming

Def. 3 adapts the notion of dependency pairs [1] from TRSs to the LP setting.

Definition 3 (dependency triple). A dependency triple is a tuple of three
elements 〈H, I, B〉 in which H and B are atoms and I is a list of atoms. For a
logic program P, we define the set DT (P) of all dependency triples as DT (P) =
{〈H, I, B〉 | H :− I, B, . . . ∈ P}.

Given a program, the number of its dependency triples is finite.

Example 4 (dependency triples of ack). Reconsider the program from Ex. 1. The
dependency triples DT (P) of the program are:

〈ack(X, 0, Z), [], p(X, Y)〉 (1)
〈ack(X, 0, Z), [p(X, Y)], ack(Y, s(0), Z)〉 (2)
〈ack(s(X), s(Y), Z), [], ack(s(X), Y, Z ′)〉 (3)
〈ack(s(X), s(Y), Z), [ack(s(X), Y, Z ′)], ack(X, Z ′, Z)〉 (4)

Now we adapt the notion of the (estimated) dependency graph [1] from TRSs
to LPs.4 While “dependency triples” are related to the “binary clauses” of [5],
our notion of dependency graphs for LPs is similar to the “atom dependency
graph” of [12]. But in contrast to [12], we use dependency graphs to modularize
termination proofs such that several different reduction pairs can be used in the
termination proof of one program.

The nodes of the dependency graph are the dependency triples and there
must be an arc from a dependency triple N to a dependency triple M whenever
an attempt to solve the “proof goal” N could load to the “proof goal” M . To
estimate this, we use the notion of connectivity.
3 So for terms t1, t2 we define t1 (�) t2 iff ‖t1‖ (≥)‖t2‖ and for atoms A1, A2 we define

A1 (�)A2 iff |A1| (≥) |A2|.
4 Our notion should not be confused with the notion of the “(predicate) dependency

graph” from [2,12,28] that simply represents the dependencies between different
predicate symbols.

12 M.T. Nguyen et al.

Definition 5 (connectivity). Let 〈H1, I1, B1〉 and 〈H2, I2, B2〉 be two depen-
dency triples. 〈H1, I1, B1〉 is connectable to 〈H2, I2, B2〉 iff B1 unifies with a
renamed apart variant of H2.

Example 6 (connectivity for ack ’s dependency triples). In Ex. 1, dependency
triple (2) is connectable to (3) and (4), and both dependency triples (3) and (4)
are connectable to all dependency triples (1), (2), (3), and (4).

Definition 7 (dependency graph). Let DT be a set of dependency triples.
The dependency graph associated with DT is a directed graph whose vertices
are the dependency triples DT and there is an arc from a vertex N to a vertex
M iff N is connectable to M . Let P be a logic program. The dependency graph
associated with DT (P) is called the dependency graph of P , denoted as DG(P).

Example 8 (dependency graph for ack). Fig. 1 shows the dependency graph for
the ack -program in Ex. 1.

Fig. 1. The dependency graph for
the ack -program

Now every infinite execution of the program
corresponds to a cycle in the dependency
graph. In our setting, a set C
= ∅ of de-
pendency triples is called a cycle if for all
N, M ∈ C there is a non-empty path from N
to M in the graph which only traverses depen-
dency triples of C. A cycle C is a strongly con-
nected component (SCC) if C is not a proper
subset of another cycle.

Note that in standard graph terminology,
a path N0 → N1 → . . . → Nk in a di-
rected graph forms a cycle if N0 = Nk and
k ≥ 1. In our context we identify cycles with
the set of elements that occur in it, i.e., we call
{N0, N1, . . . , Nk−1} a cycle, cf. [15]. Since a set never contains multiple occur-
rences of an element, this results in several cycling paths being identified with the
same set. Similarly, an SCC is a graph in standard graph terminology, whereas
we identify an SCC with the set of elements occurring in it. Then indeed, SCCs
are the same as maximal cycles.

Example 9 (cycles and SCCs for ack). The dependency graph in Fig. 1 has six
cycles C1 = {(3)}, C2 = {(4)}, C3 = {(2), (3)}, C4 = {(2), (4)}, C5 = {(3), (4)},
C6 = {(2), (3), (4)}, and one strongly connected component C6 = {(2), (3), (4)}.

Note that each vertex in the dependency graph corresponds to a possible tran-
sition from one state to another state in the computational execution of the
program. Each loop of the execution corresponds to a cycle in the graph. In-
tuitively, a program is terminating if there is no cycle in the graph which is
traversed infinitely many times.

To use dependency graphs for termination proofs, we proceed as in [1,16,19].
The idea is to inspect each SCC of the dependency graph separately and to

Termination Analysis of Logic Programs Based on Dependency Graphs 13

find a reduction pair (�,�) such that some dependency triples of the SCC
are strictly decreasing (w.r.t. �) and all others are weakly decreasing (w.r.t.
�). The following definition formalizes when a dependency triple is considered
to be “decreasing”. It relies on interargument relations for the predicates of
the program. Sect. 4 explains how to synthesize such interargument relations
and how to find reduction pairs automatically that make dependency triples
“decreasing”.

Definition 10 (decreasing dependency triples). Let P be a program. Let
(�,�) be a reduction pair and R = {Rp1 , . . . , Rpk

} be a set of interargument
relations based on (�,�) for the predicates p1, . . . , pk defined in P . Let N =
〈H, [I1, . . . , In], B〉 be a dependency triple in DT (P). N is weakly decreasing
(denoted (�, R) |= N) if Hσ � Bσ holds for any substitution σ where (�,�)
is rigid on Hσ and where I1σ ∈ Rrel(I1), . . . , Inσ ∈ Rrel(In). Analogously, N is
strictly decreasing (denoted (�, R) |= N) if Hσ � Bσ holds for any such σ.

Example 11 (decreasing dependency triples for ack). Consider the reduction pair
(�,�) from Ex. 2. Let R be the set of valid interargument relations where
Rack/3 = {ack(t1, t2, t3) | t1, t2, t3 ∈ TermP} and where Rp/2 is defined as in
Ex. 2. Then we have (�, R) |= (2). The reason is that for any substitution
σ where (�,�) is rigid on ack(X, 0, Z)σ (i.e., where Xσ is a ground term)
and where p(X, Y)σ ∈ Rp/2 (i.e., where Xσ � Y σ), we have ack(X, 0, Z)σ �
ack(Y, s(0), Z)σ. Similarly, we also have (�, R) |= (3) and (�, R) |= (4).

Note that we can restrict ourselves to those SCCs of the dependency graph that
can be invoked by calls from Call (P, S). The reason is that only those SCCs can
be involved in loops of the execution of the program P , when starting with a
query from S. Therefore, we define which SCCs are reachable from Call (P, S).

Definition 12 (reachable SCCs). Let P be a program, S be a set of atomic
queries, and N = 〈H, [I1, . . . , In], B〉 be a dependency triple. N is reachable from
Call(P, S) if there is an A ∈ Call (P, S) such that A unifies with a renamed apart
variant of H. An SCC C in DG(P) is reachable from Call(P, S) if there is an
N ∈ C which is reachable from Call(P, S).

In the ack -example, the only SCC in the dependency graph is reachable from
the set Call(P, S) of Ex. 2. But if the ack -program contained another clause
“q :− q”, then the SCC with the resulting dependency triple 〈q, [], q〉 would not
be reachable from the call set of Ex. 2. Since it suffices to prove absence of infinite
loops only for the reachable SCCs, one could then still prove termination of all
queries from S. But if one had to regard all SCCs, then the termination proof
would fail, since the SCC with the dependency triple 〈q, [], q〉 gives rise to an
infinite loop. The set of reachable SCCs can easily be (over-)approximated auto-
matically as soon as one has an (over-)approximation of Call (P, S), cf. Sect. 4.

To prove termination, we select an arbitrary reachable SCC C of the depen-
dency graph. Then, we try to find a reduction pair (�,�) such that some de-
pendency triples C� ⊆ C are strictly decreasing and all other dependency triples

14 M.T. Nguyen et al.

(from C \ C�) are weakly decreasing. This means that the strictly decreasing
dependency triples from C� can never “occur” infinitely often in any execution
of the program. Thus, we remove the vertices C� (and all edges originating or
ending in these vertices) from the dependency graph. Afterwards the procedure
is repeated (with a possibly different reduction pair). If one finally ends up with
a graph without reachable SCCs, then termination of the program is proved.

In this way, our method can use different reduction pairs for different SCCs
of the dependency graph. Moreover, one can also use several different reduction
pairs in the termination analysis of one single SCC, since SCCs are handled in
an incremental way by removing one dependency triple after the other.

However, in our approach we may only use reduction pairs (�,�) that are
rigid on Call(P, S). This prevents an increase of atoms and terms due to further
instantiations in subsequent derivation steps. For details, we refer to [26].

Definition 13 (acceptability). Let P be a program and S be a set of atomic
queries. A subgraph G of the dependency graph DG(P) is called acceptable w.r.t.
S iff either G has no SCC reachable from Call(P, S) or else, G has such an SCC
C and there is a reduction pair (�,�) and a set of valid interargument relations
R = {Rp1 , . . . , Rpk

} based on (�,�) for the predicates p1, . . . , pk in P , such that

• (�,�) is rigid on Call (P, S),
• there is a non-empty subset C� ⊆ C such that (�, R) |= N for all N ∈ C�

and (�, R) |= N for all N ∈ C \ C�, and
• the graph resulting from G by removing all vertices in C� is also acceptable.

Example 14 (termination of ack). The dependency graph of the ack -program in
Fig. 1 has only one SCC. First, we select a reduction pair (�,�). We re-use the
reduction pair from Ex. 2 and the valid interargument relations R from Ex. 11.
As shown in Ex. 11, then (2) and (4) are strictly decreasing, whereas (3) is only
weakly decreasing. Thus, we remove (2) and (4) from the dependency graph.

The remaining graph has only one vertex (3) and an edge from (3) to itself.
Thus, now the only SCC is {(3)}. We select another reduction pair (�′,�′) which
is defined by the same norm || · || as in Ex. 2 and by a new level mapping with
|ack(t1, t2, t3)| = ‖t2‖. Now we have (�′, R) |= (3), i.e., (3) can be removed.

The remaining graph is empty and thus, it has no SCC. Hence, termination
of the ack -program is proved.

The following theorem states the soundness of our approach.5

Theorem 15 (soundness). A program P is terminating w.r.t. a set of atomic
queries S if its dependency graph DG(P) is acceptable w.r.t. S.

Proof. If P is not terminating w.r.t. S, then there is an A ∈ Call (P, S), an
infinite sequence of (variable renamed) dependency triples N0, N1, . . . with Ni =
〈Hi, [Ii1, . . . , Iini], Bi〉, and substitutions θ0, θ1, . . . and σ0, σ1, . . . such that
5 Note that the proof of Thm. 15 is similar to the one for the dependency pair method

in [1]. So in contrast to the “local approaches” [4,5,12] for logic programs and the
size-change-based methods [23,29,33] for other programming paradigms, Thm. 15
does not rely on Ramsey’s theorem [6,30].

Termination Analysis of Logic Programs Based on Dependency Graphs 15

• θ0 = mgu(A, H0)
• σi is a computed answer substitution for the query (Ii1, . . . , Iini)θi

• θi+1 = mgu(Biθiσi, Hi+1)

Since there is an edge from Ni to Ni+1 for all i in the dependency graph, the
sequence N0, N1, . . . contains an infinite tail which traverses a cycle of the de-
pendency graph infinitely often.

For any subgraph G of the dependency graph, we show that if this infinite tail
is contained in G, then G cannot be acceptable. We use induction on the number
of vertices in G. The claim is obviously true if G does not contain any SCC
reachable from Call(P, S). Thus, let G contain a reachable SCC C as in Def. 13.
If the infinite tail is still contained in the acceptable subgraph resulting from
removing all vertices from C�, the claim follows from the induction hypothesis.

It remains to regard the case where the infinite tail Ni, Ni+1, . . . only traverses
dependency triples from C and where a dependency triple from C� is traversed
infinitely often. Thus, we obtain an infinite sequence

Hiθi ≈ (by rigidity, since Hiθi = Bi−1θi−1σi−1θi

and Bi−1θi−1σi−1 ∈ Call(P, S))
Hiθiσiθi+1 �
Biθiσiθi+1 =
Hi+1θi+1 ≈ (by rigidity, since Hi+1θi+1 = Biθiσiθi+1

and Biθiσi ∈ Call(P, S))
Hi+1θi+1σi+1θi+2 �
Bi+1θi+1σi+1θi+2 =
. . .

where infinitely many �-steps are “strict” (i.e., we can replace infinitely many
�-steps by “�”). This is a contradiction to the well-foundedness of �. ��

Thm. 15 can be considered an extension of Thm. 1 in [9], where a strict decrease
is required for every (mutually) recursive clause of the program, instead of a
decrease on the SCCs as in our theorem above. In particular, Ex. 1 cannot be
solved using Thm. 1 of [9].

The converse direction of Thm. 15 does not hold since “acceptability” requires
the reduction pair to be rigid on Call (P, S). Hence, the program with the two
clauses “p(X) :− q(X, Y), p(Y)” and “q(a, b)” and the set of queries S = {p(X)}
from [9] is a counterexample to the completeness direction of Thm. 15.

4 Toward Automation

Now we discuss how to automate our approach. In Sect. 4.1, we present a general
algorithm to mechanize the technique of Def. 13 and Thm. 15. Then, in Sect.
4.2 we show how to plug in existing approaches for the generation of polynomial
interpretations in order to synthesize suitable reduction pairs automatically.

16 M.T. Nguyen et al.

4.1 A General Framework

Def. 13 and Thm. 15 provide a method to detect termination of a program P
w.r.t. a set of queries S. The method can be automated as follows:

1. Compute the dependency graph DG(P) and remove all vertices which are not
reachable from Call(P, S). Decompose the remaining graph into its SCCs.

2. If the set of SCCs is empty, stop with “success” (the program is terminating).
Otherwise, select one SCC from the set.

3. If the selected SCC cannot be proved to be acceptable, we stop with “fail”
(the program may be non-terminating). If the SCC is acceptable, we delete
the strictly decreasing vertices from it and decompose the remaining graph
into its SCCs. We add this set of SCCs to the remaining set of SCCs and
continue with Step 2.

Step 1 guarantees that all remaining vertices and hence, also all remaining
SCCs are reachable from Call(P, S). Therefore, it is obvious that all SCCs de-
composed later in Step 3 are also reachable from Call (P, S).

Fig. 2. Our algorithm to verify ter-
mination of programs

Fig. 2 shows an algorithm based on Step
1-3. In the figure, reach(G) removes all de-
pendency triples from the dependency graph
G which are not reachable from Call (P, S),
gcc(G) computes the set of SCCs of a graph
G, select(S) returns an element selected
from the set S, minus(S1, S2) returns a set
containing all elements that are in the set
S1 but not in S2, “:=” is the assignment
and “=” is the comparison operator. The
function exist(G, O) checks if there exists a
reduction pair and a set of interargument
relations such that G is acceptable. If yes,
then the reduction pair is assigned to O. The
function induce(G, O) returns a graph which
results from G by removing all vertices N
where (�, R) |= N and their related arcs.
Finally, union(S1, S2) returns a set that is
the union of the sets S1 and S2.

Since Call(P, S) can be infinite in gen-
eral, it is undecidable whether a dependency
triple is reachable from Call(P, S). Heuris-
tically, it can be done by first abstracting
Call (P, S) to a finite set of call patterns and
then checking if there exists a call pattern
which unifies with the vertex [26,27].

The function exist(G, O) is the core of
the algorithm. Interestingly, it does not force
us to use a fixed type of orders. Therefore,

Termination Analysis of Logic Programs Based on Dependency Graphs 17

the algorithm can be considered a framework where different termination tech-
niques for finding well-founded orders can be plugged in to support the function
exist(G, O). In Sect. 4.2, we discuss how the termination analysis technique based
on polynomial interpretations from [26,27] can be applied to the framework.

4.2 Generating Well-Founded Orders

Since arbitrary techniques can be applied to search for reduction pairs required in
the function exist(G, O), an obvious option is to use polynomial interpretations,
one of the most powerful techniques in termination analysis of logic programming
and term rewriting systems [7,14,20,22,26,27].6 The main idea of the technique is
to map each function and predicate symbol to a polynomial, under a polynomial
interpretation | · |I . The polynomials are considered as functions of type N× . . .×
N → N, and the coefficients of the polynomials are also in N. In this way, terms
and atoms are mapped to polynomials as well.

Example 16 (polynomial interpretation for ack). The norm and level mapping
of Ex. 2 correspond to the polynomial interpretation |0|I = 0, |s(X)|I = 1 +
X, |p(X, Y)|I = 0, |ack(X, Y, Z)|I = X . So we have |ack (s(X), s(Y), Z)|I =
|s(X)|I = 1 + X and |ack (X, Z ′, Z)|I = |X |I = X .

For any polynomial interpretation I, we define a quasi-order �I on terms and
atoms: t1 �I t2 iff |t1|I ≥ |t2|I holds for all instantiations of the variables in
the polynomials |t1|I and |t2|I by natural numbers. (It suffices to regard only
natural numbers n where n ≥ |c|I for all (constant) function symbols c/0 of P .)
Similarly, the well-founded order �I is defined as t1 �I t2 iff |t1|I > |t2|I holds
for all instantiations of the variables in the polynomials |t1|I and |t2|I by such
natural numbers. Obviously, (�I ,�I) is always a reduction pair. Moreover, a
term or atom t is rigid w.r.t. (�I ,�I) iff |t|I contains no variables.

Now, all conditions in Def. 13 can be stated as constraints on polynomials.
A reduction pair (�I ,�I) satisfies the conditions in Def. 13 iff the polynomial
interpretation | · |I satisfies the resulting constraints on the polynomials.

Of course, we do not choose a particular polynomial interpretation. Instead,
we want to search for a suitable one automatically. In the philosophy of the
constraint-based approach in [10,27], we introduce a general symbolic form for
the polynomial associated with each predicate and function symbol, and for
interargument relations. Since there is no finite symbolic representation for all
possible polynomials, we restrict ourselves to fixed types of polynomials. For
example, each function and predicate symbol can be associated with a linear
polynomial and each interargument relation for a predicate can be expressed in
linear form as follows.7 Here, fi, pL

i , and pR
i are “abstract” symbolic coefficients.

6 Other possible options would be recursive path orders [11], matrix orders [13], etc.
7 As already observed for term rewriting, in the vast majority of examples, linear

polynomial interpretations are already sufficient if they are used in connection with
the dependency pair method. But of course, our approach also permits the use of
polynomials with higher degree.

18 M.T. Nguyen et al.

In order to complete the termination proof, one has to find suitable instantiations
of these coefficients with natural numbers.

• |f(X1, . . . , Xn)|I = f0 +
∑n

i=1 fiXi,
• Rp/n = { p(t1, . . . , tn) | pL

0 +
∑n

i=1 pL
i |ti|I ≥ pR

0 +
∑n

i=1 pR
i |ti|I }.

Based on the symbolic forms for polynomial interpretations and interargu-
ment relations, all termination conditions expressed in Def. 13 can also be re-
formulated symbolically. Specifically, the conditions for the function exist(G, O)
(which checks whether G is acceptable) are expressed as a set of polynomial
constraints with symbolic coefficients (e.g. fi, p

L
i , pR

i , . . .). The central question
is how to search for an instantiation of these symbolic coefficients such that the
set of constraints is satisfied. In [27], we introduced a transformational approach
to transform all constraints into a sufficient set of Diophantine constraints on
natural numbers where all unknown symbolic coefficients become variables (cf.
also [20]). A solution for the Diophantine constraints gives a suitable reduction
pair (�I ,�I) and a set of valid interargument relations based on the reduction
pair. Finding such a solution can be done by using any available Diophantine
constraint solver, e.g. [7,14]. Finally, the rigidity condition can be symbolised
based on the rigid type graph. For more details, we refer to [26,27].

Example 17 (symbolic termination conditions for ack). Reconsider Ex. 1. We
define an “abstract” symbolic polynomial interpretation as |0|I = c, |s(X)|I =
s0 +s1X , |p(X, Y)|I = p0 +p1X +p2Y , |ack(X, Y, Z)|I = a0 +a1X +a2Y +a3Z,
and a set of interargument relations R = {Rp/2, Rack/3} with

Rp/2 = {p(t1, t2) | pL
0 + pL

1 |t1|I + pL
2 |t2|I ≥

pR
0 + pR

1 |t1|I + pR
2 |t2|I }

Rack/3 = {ack (t1, t2, t3) | aL
0 + aL

1 |t1|I + aL
2 |t2|I + aL

3 |t3|I ≥
aR
0 + aR

1 |t1|I + aR
2 |t2|I + aR

3 |t3|I }.

The conditions for acceptability of the dependency graph can be reformulated
as follows:

1. For any dependency triple N ∈ {(2), (3), (4)}, we require (�I , R) |= N :

∀X, Y, Z [pL
0 + pL

1 X + pL
2 Y ≥ pR

0 + pR
1 X + pR

2 Y
⇒ a0 + a1X + a2c + a3Z ≥ a0 + a1Y + a2(s0 + s1c) + a3Z] ∧

∀X, Y, Z, Z′ [a0 + a1(s0 + s1X) + a2(s0 + s1Y) + a3Z ≥
a0 + a1(s0 + s1X) + a2Y + a3Z

′] ∧

∀X, Y, Z, Z′ [aL
0 + aL

1 (s0 + s1X) + aL
2 Y + aL

3 Z′ ≥
aR
0 + aR

1 (s0 + s1X) + aR
2 Y + aR

3 Z′

⇒ a0 + a1(s0 + s1X) + a2(s0 + s1Y) + a3Z ≥
a0 + a1X + a2Z

′ + a3Z]

Termination Analysis of Logic Programs Based on Dependency Graphs 19

2. There exists some dependency triple N ∈ {(2), (3), (4)} with (�I , R) |= N :
∀X, Y, Z [pL

0 + pL
1 X + pL

2 Y ≥ pR
0 + pR

1 X + pR
2 Y

⇒ a0 + a1X + a2c + a3Z > a0 + a1Y + a2(s0 + s1c) + a3Z] ∨
∀X, Y, Z, Z′ [a0 + a1(s0 + s1X) + a2(s0 + s1Y) + a3Z >

a0 + a1(s0 + s1X) + a2Y + a3Z
′] ∨

∀X, Y, Z, Z′ [aL
0 + aL

1 (s0 + s1X) + aL
2 Y + aL

3 Z′ ≥
aR
0 + aR

1 (s0 + s1X) + aR
2 Y + aR

3 Z′

⇒ a0 + a1(s0 + s1X) + a2(s0 + s1Y) + a3Z >
a0 + a1X + a2Z

′ + a3Z]

3. The valid interargument condition for p/2:
∀X [pL

0 + pL
1 (s0 + s1X) + pL

2 X ≥ pR
0 + pR

1 (s0 + s1X) + pR
2 X]

4. The valid interargument condition for ack/3:
∀X [aL

0 + aL
1 c + aL

2 X + aL
3 (s0 + s1X) ≥ aR

0 + aR
1 c + aR

2 X + aR
3 (s0 + s1X)] ∧

∀X, Y, Z [pL
0 + pL

1 X + pL
2 Y ≥ pR

0 + pR
1 X + pR

2 Y

∧ aL
0 + aL

1 Y + aL
2 (s0 + s1c) + aL

3 Z ≥
aR
0 + aR

1 Y + aR
2 (s0 + s1c) + aR

3 Z
⇒ aL

0 + aL
1 X + aL

2 c + aL
3 Z ≥ aR

0 + aR
1 X + aR

2 c + aR
3 Z] ∧

∀X, Y, Z, Z′ [aL
0 + aL

1 (s0 + s1X) + aL
2 Y + aL

3 Z′ ≥
aR
0 + aR

1 (s0 + s1X) + aR
2 Y + aR

3 Z′

∧ aL
0 + aL

1 X + aL
2 Z′ + aL

3 Z ≥
aR
0 + aR

1 X + aR
2 Z′ + aR

3 Z
⇒ aL

0 + aL
1 (s0 + s1X) + aL

2 (s0 + s1Y) + aL
3 Z ≥

aR
0 + aR

1 (s0 + s1X) + aR
2 (s0 + s1Y) + aR

3 Z]

5. The rigidity property for Call (P, S) = {ack(t1, t2, t3) | t1 and t2 are ground
terms, t3 is an arbitrary term }∪{p(t1, t2) | t1 is a ground term, t2 is a variable }:

p2 = 0 ∧ a3 = 0

All the constraints above are satisfied by the following instantiation of the sym-
bolic variables: c = 0, s0 = s1 = 1, p0 = p1 = p2 = 0, a0 = 0, a1 = 1,
a2 = a3 = 0, pL

0 = 0, pL
1 = 1, pL

2 = 0, pR
0 = pR

1 = 1, pR
2 = 0 and aL

i = aR
i = 0

for all i ∈ {0, 1, 2, 3}. This instantiation turns the abstract polynomial inter-
pretation of Ex. 17 into the concrete polynomial interpretation of Ex. 16 (i.e.,
now it corresponds to the norm and level mapping of Ex. 2). Similarly, the
“abstract” interargument relations of of Ex. 17 are turned into the concrete in-
terargument relations of Ex. 2 and Ex. 11 (i.e., Rp/2 = {p(t1, t2) | t1 �I t2} and
Rack/3 = {ack(t1, t2, t3) | t1, t2, t3 ∈ TermP}).
So instead of fixing a polynomial interpretation and interargument relations
before performing the termination proof, now we only fix the degree of the poly-
nomials used in the polynomial interpretation (e.g., linear or quadratic ones).
Then we can automatically generate symbolic constraints and try to solve them
afterwards. In this way, suitable polynomial interpretations and interargument
relations can be synthesized fully automatically.

20 M.T. Nguyen et al.

5 Conclusion

We have introduced a new framework for termination analysis of LPs based
on dependency triples and dependency graphs. Although the notion of depen-
dency pairs and dependency graphs is very popular in the domain of termination
analysis of TRS [1,15,16,18,19], this is the first time that it is applied for LP
termination analysis directly. Our contribution is twofold: (1) it results in a
weaker condition for verifying termination of LPs, where the decrease condition
is established for the strongly connected components of the dependency graph,
instead of at the clause level as it has been done before; (2) it introduces a mod-
ular approach in which termination conditions can be separated into different
groups, each of which can be treated independently by automatically searching
for different suitable well-founded orderings.

A difference between the dependency pair approach for TRSs and our approach
is that instead of separating between defined symbols and constructors as for
TRSs, we separate between predicate and function symbols of the LP. Another
main difference is that in the dependency pair method for TRSs, one requires a
weak decrease for the rules of the TRS in order to take the effect of “nested” func-
tions in recursive arguments into account. In the LP-context, these nested func-
tions correspond to body atoms preceding recursive calls. We store these atoms
in an additional component of the dependency pair (yielding dependency triples)
and take their effect into account by considering interargument relations.

The authors of this paper were involved in the implementation of two of the
most powerful automated termination analysers for LPs (Polytool which follows
the approach of [26,27] and AProVE [17] which transforms LPs to TRSs and then
tries to prove termination of the resulting TRS [31].) AProVE was the most success-
ful termination prover for logic programs, functional programs, and term rewrite
systems in all annual International Competitions of Termination Tools 2004 - 2007
[24], where Polytool obtained a close second place for logic programs in the 2007
competition. As mentioned in [31], there exist many LPs where termination can
currently only be proved by transformational tools like AProVE and there are also
many examples where the termination proof only succeeds with direct tools like
Polytool, cf. Sect. 1. Our current work intends to combine the advantages of both
approaches by adapting TRS-techniques like dependency pairs to direct termina-
tion approaches for LPs. While the present paper only adapted basic concepts of
the dependency pair method to the LP setting, in the future we will also try to
adapt further more sophisticated “dependency pair processors” [16,18] as well.

Currently, we are working on an implementation of the results of this paper
within Polytool. Here, we try to re-use algorithms from the dependency pair
implementation of AProVE. As mentioned in Sect. 1, a first prototypical im-
plementation already shows that in this way one can handle (a) examples that
could up to now only be solved with direct tools such as [26, “der”], (b) exam-
ples that could up to now only be solved with transformational tools based on
dependency pairs such as [32, “LP/SGST06-shuffle”], as well as (c) examples
like [32, “LP/SGST06-snake”] that could not be solved by any tool up to
now. Note that the Diophantine constraints resulting from our new approach

Termination Analysis of Logic Programs Based on Dependency Graphs 21

according to Sect. 4 are usually smaller and simpler than the ones generated by
the previous version of Polytool [26,27]. But already in the previous version of
Polytool, solving these constraints automatically was no problem in practice. (To
this end, the SAT-based constraint solver of AProVE was used [14].) Thus, this
solver will also be used for the automatic generation of the required polynomial
interpretations and interargument relations in our new approach.

Acknowledgement

We are grateful to the referees for many helpful suggestions. Manh Thang Nguyen
is supported by FWO/2006/09: Termination analysis: Crossing paradigm bor-
ders. Peter Schneider-Kamp and Jürgen Giesl are supported by the Deutsche
Forschungsgemeinschaft (DFG), grant GI 274/5-1.

References

1. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theo-
retical Computer Science 236(1-2), 133–178 (2000)

2. Bol, R.N., Apt, K.R., Klop, J.W.: An analysis of loop checking mechanisms for
logic programs. Theoretical Computer Science 86(1), 35–79 (1991)

3. Bossi, A., Cocco, N., Fabris, M.: Norms on terms and their use in proving universal
termination of a logic program.TheoreticalComputer Science 124(2), 297–328 (1994)

4. Bruynooghe, M., Codish, M., Gallagher, J.P., Genaim, S., Vanhoof, W.: Termina-
tion analysis of logic programs through combination of type-based norms. ACM
Transactions on Programming Languages and Systems 29(2) (2007)

5. Codish, M., Taboch, C.: A semantic basis for the termination analysis of logic
programs. Journal of Logic Programming 41(1), 103–123 (1999)

6. Codish, M., Genaim, S.: Proving termination one loop at a time. In: Proc. WLPE
2003 (2003)

7. Contejean, E., Marché, C., Tomás, A.P., Urbain, X.: Mechanically proving ter-
mination using polynomial interpretations. Journal of Automated Reasoning 34(4),
325–363 (2005)

8. De Schreye, D., Verschaetse, K., Bruynooghe, M.: A framework for analyzing the
termination of definite logic programs with respect to call patterns. In: Proc. FGCS
1992, pp. 481–488 (1992)

9. De Schreye, D., Serebrenik, A.: Acceptability with General Orderings. In: Kakas,
A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond.
LNCS (LNAI), vol. 2407, pp. 187–210. Springer, Heidelberg (2002)

10. Decorte, S., De Schreye, D., Vandecasteele, H.: Constraint-based automatic termi-
nation analysis of logic programs. ACM Transactions on Programming Languages
and Systems 21(6), 1137–1195 (1999)

11. Dershowitz, N.: Termination of rewriting. Journal of Symbolic Computation 3(1-2),
69–116 (1987)

12. Dershowitz, N., Lindenstrauss, N., Sagiv, Y., Serebrenik, A.: A general framework
for automatic termination analysis of logic programs. In: Applicable Algebra in
Engineering, Communication and Computing, 12(1,2), pp. 117–156 (2001)

22 M.T. Nguyen et al.

13. Waldmann, J., Zantema, H., Endrullis, J.: Matrix Interpretations for Proving Ter-
mination of Term Rewriting. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006.
LNCS (LNAI), vol. 4130, pp. 574–588. Springer, Heidelberg (2006)

14. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl,
H.: SAT Solving for Termination Analysis with Polynomial Interpretations. In:
Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354.
Springer, Heidelberg (2007)

15. Giesl, J., Arts, T., Ohlebusch, E.: Modular termination proofs for rewriting using
dependency pairs. Journal of Symbolic Computation 34(1), 21–58 (2002)

16. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The Dependency Pair Frame-
work: Combining Techniques for Automated Termination Proofs. In: Baader, F.,
Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer,
Heidelberg (2005)

17. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termina-
tion proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

18. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)

19. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Informa-
tion and Computation 199(1-2), 172–199 (2005)

20. Hong, H., Jakuš, D.: Testing positiveness of polynomials. Journal of Automated
Reasoning 21(1), 23–38 (1998)

21. Kusakari, K., Nakamura,M., Toyama, Y.:Argument filtering transformation. In:Na-
dathur,G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 48–62. Springer,Heidelberg (1999)

22. Lankford, D.S.: On proving term rewriting systems are Noetherian. Technical Re-
port MTP-3, Louisiana Technical University, Ruston, LA, USA (1979)

23. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: Proc. POPL 2001, pp. 81–92 (2001)

24. Marché, C., Zantema, H.: The Termination Competition. In: Baader, F. (ed.) RTA
2007. LNCS, vol. 4533, pp. 303–313. Springer, Heidelberg (2007)

25. Mesnard, F., Bagnara, R.: cTI: A constraint-based termination inference tool for
ISO-Prolog. In: Theory and Practice of Logic Programming, vol. 5(1, 2), pp. 243–
257 (2005)

26. Nguyen, M.T., De Schreye, D.: Polynomial Interpretations as a Basis for Termina-
tion Analysis of Logic Programs. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005.
LNCS, vol. 3668, pp. 311–325. Springer, Heidelberg (2005)

27. De Schreye, D., Nguyen, M.T.: Polytool: Proving Termination Automatically
Based on Polynomial Interpretations. In: Puebla, G. (ed.) LOPSTR 2006. LNCS,
vol. 4407, pp. 210–218. Springer, Heidelberg (2007)

28. Plümer, L.: Termination Proofs for Logic Programs. Springer, Heidelberg (1990)
29. Podelski, A., Rybalchenko, A.: Transition invariants. In: Proc. LICS 2004, pp. 32–

41 (2004)
30. Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Society 30, 264–

286 (1930)
31. Schneider-Kamp, P., Giesl, J., Serebrenik, A., Thiemann, R.: Automated Termina-

tion Analysis for Logic Programs by Term Rewriting. In: Puebla, G. (ed.) LOPSTR
2006. LNCS, vol. 4407, pp. 177–193. Springer, Heidelberg (2007)

32. The termination problem data base, http://www.lri.fr/∼marche/tpdb.
33. Thiemann, R., Giesl, J.: The size-change principle and dependency pairs for termi-

nation of term rewriting. Applicable Algebra in Engineering, Communication and
Computing 16(4), 229–270 (2005)

http://www.lri.fr/~marche/tpdb

Type-Based Homeomorphic Embedding and Its

Applications to Online Partial Evaluation

Elvira Albert1, John Gallagher2, Miguel Gómez-Zamalloa1,
and Germán Puebla3

1 DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
2 CBIT, Roskilde University, DK-4000 Roskilde, Denmark

3 CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

Abstract. Homeomorphic Embedding (HEm) has proven to be very
powerful for supervising termination of computations, provided that such
computations are performed over a finite signature, i.e., the number of
constants and function symbols involved is finite. However, there are
situations, for example numeric computations, which involve an infinite
(or too large) signature, in which HEm does not guarantee termination.
Some extensions to HEm for the case of infinite signatures have been
proposed which guarantee termination, but they either do not provide
systematic means for generating such extensions or the extensions are
too simplistic and do not produce the expected results in practice. We
introduce Type-based Homeomorphic Embedding (TbHEm) as an exten-
sion of the standard, untyped HEm to deal with infinite signatures. In
the paper, we show how TbHEm can be used to improve the accuracy
of online partial evaluation. For this purpose, we propose an approach
to constructing suitable types for partial evaluation automatically based
on existing analysis tools for constraint logic programs. We also present
useful properties of types which allow us to take full advantage of Tb-
HEm in practice. Experimental results are reported which show that our
work improves the state of the practice of online partial evaluation.

1 Introduction

The homeomorphic embedding (HEm) relation [10,11,12] has become very pop-
ular to ensure online termination of symbolic transformation and specialization
methods and it is essential to obtain powerful optimizations, for instance, in the
context of online Partial Evaluation (PE) [9]. Intuitively, HEm is a structural
ordering under which an expression t1 is greater than, i.e., it embeds, another
expression t2, written as t2� t1, if t2 can be obtained from t1 by deleting some
parts, e.g., s(s(U + W)×(U+s(V))) embeds s(U× (U + V)). The HEm relation can
be used to guarantee termination because, provided the set of constants and
functors is finite, every infinite sequence of expressions t1, t2, . . . , contains at
least a pair of elements ti and tj with i < j s.t. ti� tj . Therefore, when it-
eratively computing a sequence t1, t2, . . . , tn, finiteness of the sequence can be
guaranteed by using HEm as a whistle. Whenever a new expression tn+1 is to

King, A. (Ed.): LOPSTR 2007, LNCS 4915, pp. 23–42, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

24 E. Albert et al.

be added to a finite sequence t1, . . . , tn, we first check whether tn+1 embeds any
of the expressions already in the sequence. If that is the case, we say that HEm
whistles, i.e., it has detected (potential) non-termination and the computation
has to be stopped. Otherwise, tn+1 can be safely added to the sequence and the
computation can proceed.

Two key features for the success of HEm as an approach for guaranteeing on-
line termination are i) in the case of finite sequences, it often allows sequences
to grow considerably large before the whistle blows, to the point that in a good
number of cases the full sequence can be computed without the whistle blow-
ing at all; ii) in the case of infinite sequences, it often identifies (potential)
non-termination quickly, and the whistle blows without unnecessarily further
expanding the sequence.

While HEm has been proved very powerful for symbolic computations, some
difficulties remain in the presence of infinite signatures, such as the numbers. In
the case of logic programs, infinite signatures appear as soon as certain Prolog
built-ins such is/2, functor/3 name/2, =../2, atom codes/2, etc. are used.
Some extensions to HEm over infinite signatures have been defined and used in
practice (e.g. [11,2]), but they are often too ad-hoc, i.e., they only allow constants
which appear explicitly in the program, regardless of which part of the program
(predicate, argument position) they appear. As the approach is purely syntactic,
it sometimes turns out to be too conservative (“whistling” too early) in practice,
breaking feature i) above; while it can also be too aggressive, thus also sometimes
breaking feature ii) above.

In this paper, we introduce the type-based homeomorphic embedding (TbHEm)
relation which by taking information about the behavior of the program into
account, provides more precise results in the presence of infinite signatures. In
a sense, whereas [11,2] take a simple syntactic approach to extending the HEm
relation, we propose a semantic approach for such extension. To achieve this,
our typed relation is defined on types structured in two parts: a finite component
and an infinite component. Intuitively, TbHEm allows expanding sequences as
long as, whenever we compare two terms of a given type, the actual symbols
which appear in such terms belong to the finite component of the type.

We illustrate the benefits of TbHEm in the context of online Partial Evaluation
(PE) [9]. In particular, we use a simplified interpreter for an imperative, stack-
based bytecode language written in Prolog whose specialization (if successful)
allows decompiling bytecode programs to Prolog. We show how to automatically
construct typings by relying on existing analysis techniques for the inference of
well-typings [5]. Moreover, we present the property of a type being of finite
signature (resp. infinite signature) which guarantees that all terms in the type
are built out of a finite (resp. infinite) number of constant and functor symbols.
We also outline how analysis of numeric bounds can be used to infer finite
signature properties of types. In the case of finite signature, we can safely apply
traditional HEm. We report on experimental results which compare TbHEm with
previous proposals and show the benefits of our approach for the specialization
of logic programs with infinite signatures.

Type-Based Homeomorphic Embedding 25

The rest of the paper is organized as follows. Sect. 2 recalls some basic notions
of PE, with special emphasis on the role of embedding. In Sect. 3, we review
existing proposals in specialization of interpreters. In Sect. 4, we introduce Tb-
HEm and prove its correctness. Sect. 5 proposes the use of well-typings as suitable
types for the application of TbHEm in online PE and reports some experiments.
Sect. 6 presents interesting properties of types to use TbHEm in practice, to-
gether with some experimental results. Finally, Sect. 7 discusses related work
and concludes.

2 Basics on Embedding in Partial Evaluation

We assume familiarity with the basic concepts of logic programming and partial
evaluation, as they are presented in e.g. [16,9]. We start by recalling the definition
of HEm, which can be found for instance in Leuschel’s work [14].

Definition 1 (�). Given two atoms A = p(t1, . . . , tn) and B = p(s1, . . . , sn),
we say that B embeds A, written A � B, if ti � si for all i s.t. 1 ≤ i ≤ n. The
embedding relation over terms, also written �, is defined by the following rules:

1. Y � X for all variables X, Y .
2. s� f(t1, . . . , tn) if s � ti for some i.
3. f(s1, . . . , sn)� f(t1, . . . , tn) if si � ti for all i, 1 ≤ i ≤ n.

We now explain the role that HEm plays in online PE (see e.g. [9,12,14]), which
is a semantics-based program transformation technique which specializes a pro-
gram w.r.t. given input data, hence, it is often called program specialization.
Essentially, partial evaluators are non-standard interpreters which evaluate goals
as long as termination is guaranteed and specialization is considered profitable.
Given a program P and an atom S, partial evaluation produces a new program
PS which is a specialization of P for S. In logic programming, the underlying
technique is to construct (possibly) incomplete SLD trees for the set of atoms to
be specialized. In an incomplete tree, it is possible to choose not to further un-
fold a goal. Therefore, the tree may contain three kinds of leaves: failure nodes,
success nodes (which contain the empty goal), and non-empty goals which are
not further unfolded. The latter are required in order to guarantee termination
of the partial evaluation process, since the SLD being built may be infinite. Even
if the SLD trees for fully instantiated initial atoms (as regards the input argu-
ments) are finite, the SLD trees produced for partially instantiated initial atoms
may be infinite. This is because the SLD for partially instantiated atoms can
have (infinitely many) more branches than the actual SLD tree at run-time.

HEm in local control. The role of local control is to determine how to construct
the (incomplete) SLD trees. In particular, the unfolding rule decides, for each
resolvent, whether to stop unfolding or to continue unfolding it and, if so, which
atom to select from the resolvent. Unfolding is continued only if termination
is not endangered and specialization is considered profitable. Therefore, it is

26 E. Albert et al.

desirable to have a mechanism for guaranteeing termination which whistles as
late as possible. State of the art local control rules based on HEm do not check for
embedding against all previously selected atoms but rather only against those
in its sequence of covering ancestors (see e.g., [18]). This increases both the
efficiency of the checking and whistling later.

HEm in global control. Partial evaluators need to compute SLD-trees for a num-
ber of atoms in order to ensure that all atoms which appear in non-failing leaves
of incomplete SLD trees are “covered” by the root of some tree (this is known as
the closedness condition of partial evaluation [15]). The role of the global control
is to ensure that we do not try to compute SLD trees for an infinite number of
atoms. The usual way of achieving this is by applying an abstraction operator
which performs “generalizations” on the atoms for which SLD trees are to be
built. HEm can also be used at the global control level in order to decide when to
generalize (i.e., to apply the most specific generalization) before proceeding to
build SLD trees. Basically, for each new atom A, global control checks whether
A is larger than (i.e., it embeds) any of the atoms in the set Ti (which contains
the atoms in the roots of the partial trees which have already been built). If A
does not embed any atom in Ti, it is added to the set; otherwise, A is generalized
into msg(A, A′), where A′ ∈ Ti and A′�A. At the global control level, HEm can
be combined with other techniques such as global trees, characteristic trees, trace
terms, etc. See e.g. [12] and its references.

Partial evaluation and Code Generation. As discussed above, the global control
returns a set of atoms T . Finally, a partial evaluation of P w.r.t. S can then
be systematically extracted from the set T . As notation, we refer to each root-
to-leaf path in an SLD tree as derivation. The notion of resultant is used to
generate a program rule associated with each non-failing derivation in an SLD
tree. In particular, given a derivation for P ∪ {A} with A ∈ T ending in B and
θ the composition of the mgus in the derivation steps, then the rule Aθ ← B is
called the resultant of the derivation. A partial evaluation is then defined as the
union of the sets of resultants associated to the SLD trees for all atoms in T .

3 Embedding with Infinite Signatures: Motivating
Example

In Fig. 1 we show a fragment of a simplified imperative bytecode interpreter
implemented in Prolog. If the partial evaluator is powerful enough, given a byte-
code program we can obtain a decompiled version of it in Prolog (see e.g. [1]
for an object-oriented stack-based interpreter). For brevity, we omit the code of
some predicates like build init state/2 (whose purpose is explained below)
and localVar update/4 which simply updates the value of a local variable. We
only show the definition of step/3 for a reduced set of instructions. The byte-
code to be decompiled is represented as a set of facts bytecode(PC,Inst)where
PC contains a program counter and Inst the corresponding bytecode instruc-
tion. A state is of the form st(PC,OStack,LocalV) where OStack represents

Type-Based Homeomorphic Embedding 27

main(InArgs,Top) :-
build_init_state(InArgs,S0),
execute(S0,st(_,[Top|_],_)).

execute(S,S):-
S = st(PC,_,_),
bytecode(PC,return).

execute(S1,Sf) :-
S1 = st(PC,_,_),
bytecode(PC,Inst),
step(Inst,S1,S2),
execute(S2,Sf).

step(const(_T,Z),st(PC,S,L),S2) :-
PCp is PC + 1,
S2 = st(PCp,[Z|S],L).

step(istore(X),st(PC,[I|S],L),S2) :-
PCp is PC + 1,
localVar_update(L,X,I,Lb),
S2 = st(PCp,S,Lb).

step(goto(O),st(PC,S,L),S2) :-
PCp is PC+O,
S2 = st(PCp,S,L).

....

Fig. 1. Fragment of simplified bytecode interpreter

the operand stack and LocalV the list of local variables. The predicate main/2,
given the input method arguments InArgs, first builds the initial state by means
of predicate build init state/2 and then calls predicate execute/2. In turn,
execute/2 first calls predicate step/3, which produces S2, the state after execut-
ing the corresponding bytecode, and then calls predicate execute/2 recursively
with S2 until we reach a return instruction.

Consider the count method which appears in the left hand side of Fig. 2,
represented as a set of facts. For clarity of the presentation, on the right hand
side of Fig. 2 we show a Java source program which can be compiled into the
corresponding bytecode. However, it is important to note that the decompilation
is performed directly from the bytecode and that the decompiler does not have
access to the source. It can be seen that count receives an integer and executes
a loop where a counter initialized to “0” (in bytecodes 0 and 1) is incremented
by one at each iteration (bytecode 5) until the counter reaches the value of the
input parameter (checking the condition comprises bytecodes 2, 3 and 4). The
method returns the value of the counter in bytecodes 7 and 8. For decompiling
the count method, we partially evaluate the interpreter w.r.t. the bytecode facts
which appear to the left of the figure by specializing the atom: main(N,I), where
N is the input parameter and I represents the return value (i.e., the top of the
stack at the end of the computation).

In Figure 3, we depict (a reduced version of) one of the SLD trees that leads
to an effective decompilation of our running example and that we will refer to
in the next sections. For simplicity, apart from the entry atom main/2, we only
show atoms for execute/2, as it is the only recursive predicate in the program.
Thus, each arrow in the tree involves the application of several unfolding steps.
Note that some of the statements within the body of each step operation can
remain residual when they involve data which is not known at specialization
time. The computation rule used in the unfolding operator is able to residualize
calls which are not sufficiently instantiated and select non-leftmost atoms in a
safe way [3], in particular, further calls to execute can be selected. We represent
such residual calls as labels in the arrows of the tree.

28 E. Albert et al.

bytecode(0,const(int,0)).
bytecode(1,istore(1)).
bytecode(2,iload(1)).
bytecode(3,iload(0)).
bytecode(4,if_icmp(geInt,3)).
bytecode(5,iinc(1,1)).
bytecode(6,goto(-4)).
bytecode(7,iload(1)).
bytecode(8,return).

static int count(int n){
int i = 0;
while (i < n)
i++;

return i;
}

Fig. 2. Object program for working example

main(N, I)

��
execute(st(0, [], [N, 0]), Sf)

��
execute(st(1, [0], [N, 0]), Sf)

��� � � � � � � � � � � � ��
�

�
�� � � � � � � � � � � � �

execute(st(2, [], [N, 0]),Sf)(1)

��
execute(st(4, [N, 0], [N, 0]), Sf)

{0≥N}��������� {0<N}���������

execute(st(8, [0], [N, 0]), Sf)
{I/0}��

execute(st(6, [], [N, 1]), Sf)

��
true

� � � � � � � � � � � � ��
�

�
�

� � � � � � � � � � � � �
execute(st(2, [], [N,1]), Sf)(2)

(1) �T (2), (1) ��∗
S (2)��

∞ (with �)

main(N,0) :- 0>=N.
main(N,I) :- 0<N,

sp execute(N,1,I).

sp execute(N,I,I) :- I>=N.
sp execute(N,A,I) :- A<N, A’ is A+1,

sp execute(N,A’,I).

Fig. 3. Partial unfolding SLD tree and residual code of working example

3.1 Using the Original Homeomorphic Embedding

Let us first consider an online partial evaluator (which is able to accurately
handle built-in predicates and to safely perform non-leftmost and) which uses
HEm to control termination both at the local and global control levels. As
it can be seen in the figure, the PC value “2” corresponds to the loop en-
try. By applying HEm, the evaluation contains a subsequence of atoms of the
form: execute(st(2, [], [N, 0]), Sf), execute(st(2, [], [N, 1]), Sf), execute(st(2, [],
[N, 2]), Sf), . . . marked within dashed frames in the figure, which correspond to
consecutive iterations of the loop in which the control returns to the loop head
(PC value 2 in the first position of the state) with a value for the loop counter

Type-Based Homeomorphic Embedding 29

(local variable at the second position in the resulting state) increased by one.
This sequence can grow infinitely, as the HEm does not flag it as potentially
dangerous, which is marked by ∞ (with �) in the figure. This is because the
interpreter uses Prolog’s arithmetic (i.e., the is/2 predicate), which breaks the
finite signature property featured by pure logic programs.

In order to get a quality decompilation, we need to filter out the value of the
counter (local variable 1) but not that of the PC. As shown in the figure, this re-
quires stopping the derivation when we hit the atom execute(st(2, [], [N, 1]), Sf)
(marked as (1)�T (2)) and generalize it w.r.t. the above atom within a dashed
frame, resulting in execute(st(2, [], [N, X]), Sf).

3.2 Recovering Termination: Embedding with Number Filtering

In programs which contain Prolog arithmetic but do not generate an infinite
number of functors via functor/3, =../2, etc., a relatively straightforward
solution in order to recover termination is to use the �num relation, which is an
adaptation of HEm which filters out numeric values, i.e., any number embeds any
other number. The atom execute(st(2, [], [N, 1]), Sf) embeds execute(st(2, [],
[N, 0]), Sf) under �num and therefore we avoid non-termination. Unfortunately,
this modification to HEm, is far too conservative, and leads to excessive preci-
sion loss. For instance, in the specialization of main(N, I), the first two atoms
for execute/2 are execute(st(0, [], [N, 0]), Sf) and execute(st(1, [0], [N, 0]), Sf).
By using �num, the whistle blows at this point and unfolding has to stop.
Furthermore, the latter atom is generalized at the global control level into
execute(st(X, Y, [N, 0]), Sf) before proceeding with the specialization. This turns
out not to be acceptable for the specialization of our interpreter, since we lose
track of which the next instruction to execute is—which prevents us from elim-
inating the interpretation layer—and in many cases the residual program ends
up containing the whole original interpreter.

3.3 Increasing Accuracy: Static Symbols in the Program

A simple syntactic way of increasing the accuracy while preserving termination,
as proposed in [11], consists in considering two sets of symbols: those which appear
explicitly in the program and goal, which is obviously finite, and another infinite
set which contains all other symbols. In the following, this relation is denoted as
�∗

S . When comparing two terms we keep those symbols which belong to the finite
set and filter out all other ones. Under this relation, the atom execute(st(1, [0],
[N, 0]), Sf) does not embed the atom execute(st(0, [], [N, 0]), Sf) in the figure, as
the numbers 0 and 1 are different static symbols which occur in the program.
Hence, we are not forced to generalize them and we can keep the PC value.

Unfortunately, the �∗
S relation turns out not to be optimal in our case either

since execute(st(2, [], [N, 1]), Sf) does not embed execute(st(2, [], [N, 0]), Sf).
This means that unfolding proceeds with a second iteration of the loop. The
process is guaranteed to terminate, we will unfold at most as many iterations of
the loop as distinct numbers appear in the program. However, we are not able to

30 E. Albert et al.

achieve the quality decompilation which appears at the bottom of Figure 3. For
obtaining such good decompilation, we need to generalize the loop counter, i.e.,
the atom execute(st(2, [], [N, 1]), Sf) has to embed execute(st(2, [], [N, 0]), Sf).
Intuitively, the reason why this relation does not behave optimally is because
the fact that many symbols appear explicitly in the program for one argument
(in our case the PC counter) should somehow not affect the set of symbols which
we should consider as static for other arguments (the list of local variables).

Note that the use of characteristic trees [13] to control the degree of poly-
variance does not lead to an optimal decompilation in this example either. The
reason is that characteristic trees concern only global and not local control.
Therefore, as already mentioned above, they do not stop the local derivation
which may perform as many unrollings of the loop as different values for the
loop counter there are in the program. Once the local control stops this unfold-
ing process, the value of the counter will be generalized by the global control.
However, the characteristic tree of this generalized term is clearly not equivalent
to the one of the previous unrolling for the different values in the counter. There-
fore, the decompilation of the loop body for the static values remains residual
in the specialized code as well.

4 Type-Based Homeomorphic Embedding

In the presence of infinite signatures, a general method of defining homeomor-
phic embedding relations exists; an extended homeomorphic embedding relation
is defined in [11] based on previous results by Kruskal [10] and by Dershowitz
[6]. This solution defines a family of embedding relations, where a subsidiary
ordering on function symbols plays an essential role. However, we argue that
this does not really solve the practical problem of finding an effective embedding
relation, since there is no automated mechanism for finding the “right” ordering
relation on the function symbols in the signature.

In this section, we propose typed-based homeomorphic embedding (TbHEm for
short), a relation which improves HEm by making use of additional information
provided in the form of types. We outline how this approach can be seen as a
way of generating instances of extended HEm as defined by Leuschel, including
the possibility of taking into account the program semantics. The types required
for guiding TbHEm can be provided manually or, interestingly, be automatically
inferred by program analysis, as we will see in Section 5.

4.1 Types: Preliminaries and Notation

In the following, let P be a program and ΣP be a (possibly infinite) signature
including the functions and constants appearing in P and goals for P as well as
in computations of P . We adopt the syntax of Mercury [20] for type definitions.
Type expressions (types), elements of T , are constructed from an infinite set of
type variables (parameters) VT and an alphabet of ranked type symbols ΣT ;
these are disjoint from the set of variables V and the alphabet of functors ΣP

of a given program P respectively.

Type-Based Homeomorphic Embedding 31

Definition 2 (type definition). A type rule for a type symbol h/n ∈ ΣT is of
the form h(T̄) −→ f1(τ̄1); . . . ; fk(τ̄k); . . . (k ≥ 1) where T̄ is a n-tuple of distinct
type variables, f1, . . . , fk, . . . are distinct function symbols from ΣP , τ̄i (i ≥ 1)
are tuples of corresponding arity from T , and type variables in the right hand
side, if any, are from T̄ (a condition known as transparency [17,8]). A type
definition is a finite set of type rules where no two rules contain the same type
symbol on the left hand side, and there is a rule for each type symbol occurring
in the type rules.

We write t : τ to mean that term t is of type τ . As in Mercury [20], a function
symbol can occur in several type rules. In the definition above we allow type
rules containing an infinite number of cases. Thus, standard infinite types such
as integer are permitted, defined by a rule with an infinite number of cases
containing the numeric constants. In order to define TbHEm we introduce some
extra annotation into type rules. We consider the right hand side of each type
rule to consist of two disjoint components, each possibly empty. More precisely,
we will structure a type rule as h(T̄) −→ F ; I, where the union F∪I are the cases
in the type rule, F ∪ I is non-empty, F is either empty or finite and I is either
empty or infinite. We say that a type τ ∈ T is of infinite component if I is non-
empty in the rule defining τ . Otherwise it is said to be of finite component. Note
that for types of infinite component there are infinitely many ways of splitting
them into type rules; for example nat −→ F ; I where F = ∅ and I = N, or
F = {0, 1, 2} and I = N \ {0, 1, 2}, etc.

A predicate signature for an n-ary predicate p is of the form p(τ̄) and de-
clares a type τi ∈ T for each argument of the predicate p/n. Programs are
assumed to be well-typed in the usual sense, namely that every atom and term
in a clause can be assigned types consistent with the type declarations such that
the type assigned to each head atom is a variant of the signature for its predicate,
the types of the body atoms are instances of the corresponding signatures, and
multiple occurrences of the same variable in the clause are assigned the same
type. Furthermore, we disallow polymorphic recursion; body atoms for recursive
predicates are assigned a type that is a variant of the signature. The relevant
consequences of well-typing for our purpose are firstly that a well-typed program
and goal generate only well-typed atoms in computations and secondly that only
a finite number of types arise during a computation. An infinite set of different
types such as h(T), h(h(T)), h(h(h(T))), . . . cannot arise in a computation, due
to the absence of polymorphic recursion.

4.2 Type-Based Homeomorphic Embedding

We now define TbHEm (�T). It follows closely the definition of the extended
HEm relation defined in [11] on untyped terms; here we define a relation on
typed terms. As in the definition in [11], two subsidiary relations �F and �S

are needed. The first, �F , is a relation on function symbols paired with their
associated types, and it refers to the infinite component of type rules described
above.

32 E. Albert et al.

Definition 3. Let �F be the following relation on the set of pairs ΣP × T .
(f1, τ1) �F (f2, τ2) iff (1) the rules defining τi are of form hi(V̄i) −→ Fi; Ii, for
i = 1, 2 and (2) either f1 = f2 ∧ τ1 = τ2 or f2 is in the infinite component I2 of
the rule for τ2.

For instance, given τ −→ F ; I with F = {1, 2} and I = N \ {1, 2} then (1, τ)
�F

(2, τ) and (1, τ) �F (5, τ). The other relation, �S , is a relation on sequences of
typed terms, and for our purposes here we can take it to be true for all pairs of
sequences of typed terms. In general this relation can be defined to allow more
refined treatment of associative operators, among other things; as noted in [11],
whether ∧(a, b, c) is embedded in ∧(a, b, c, d) depends on the nested structure of
the expressions, if ∧ is taken as a binary functor. Though we do not use it here,
we include the relation �S in the following definition for uniformity with [11],
so that our notion of typed embedding becomes an instance of the extended
homeomorphic embedded defined there.

Definition 4 (�T). Given two typed atoms A = p(t1, . . . , tn) and B = p(s1,
. . . , sn), with predicate signature p(τ1, . . . , τn), we say that B embeds A, written
A �T B, if ti : τi �T si : τi for all i s.t. 1 ≤ i ≤ n. The embedding relation over
typed terms, also written �T , is defined by the following rules:

1. Y :τY �T X:τX for all variables X, Y .
2. s :τ �T f(t1, . . . , tn) :τ ′ if s :τ �T ti :τ ′

i for some i, where τ ′
1, . . . , τ

′
n are the

respective types of t1, . . . , tn.
3. f(s1, . . . , sn) :τ �T g(t1, . . . , tm) :τ ′ if

(a) (f, τ) �F (g, τ ′),
(b) (s1 :τ1, . . . , sn :τn) �S (t1 :τ ′

1, . . . , tm :τ ′
m), and

(c) ∃i1, . . . , in such that 1 ≤ i1 < · · · < in ≤ m and ∀j ∈ {1, . . . , n},
sj :τj �T tij :τ ′

ij
,

where τ1, . . . , τn, τ ′
1, . . . , τ

′
m are the respective types of s1, . . . sn, t1, . . . , tm.

Rule 3 of the definition specifies that embedding can occur between terms with
different function symbols, where the function symbol of the “larger” term using
the �F relation is from the I component of its type. However, as long as we
compare distinct terms from an infinite type and remain within the finite com-
ponent F of the type, no embedding (using rule 3) occurs since the condition
(f, τ1) �F (g, τ2) does not hold. For instance, consider the following predicate
signature and type definition, p(τ) and τ −→ F ; I. We have that p(1) �T p(2)
if F = ∅ and I = N. However, p(1)
�T p(2) if F = {0, 1, 2} and I = N \ {0, 1, 2}.

Proposition 1. Given a program P that is well-typed with respect to a type
definition and set of signatures, there is no infinite sequence of well-typed atoms
A1, A2, . . . in a computation for P such that for all i, j where i < j, Ai
�T Aj .

Proof. First note that, by the assumption that polymorphic recursion is disal-
lowed, only a finite number of types (up to renaming of type variables) arises in a
computation. The proposition follows from the fact that is a �T well quasi order
(wqo) on typed atoms over a finite set of types. A binary relation ≤: D ×D is a

Type-Based Homeomorphic Embedding 33

wqo if (i) it is reflexive and transitive, and (ii) for all infinite sequences d0, d1, . . .
of elements of D, ∃i < j such that di ≤ dj . By Theorem 4 from [11], this in turn
follows if both �F and �s are wqos on their respective domains, which we now
prove.

The proof that �S is a wqo is trivial. For �F , it can easily be verified that
the relation is reflexive and transitive. To prove the wqo property (ii) assume
that there is an infinite sequence of pairs from ΣP × T , (f0, τ0), (f1, τ1),
First assume there is only a finite number of function symbols occurring in the
sequence; in this case, since there is also a finite number of types, there must
exist i and j, i < j, such that fi = fj ∧ τi = τj and hence (fi, τi) �F (fj , τj).
Secondly, assume that there is an infinite set of function symbols occurring in
the sequence; since the number of types is finite there must exist some j > 0,
such that fj is in the infinite component of the type rule for τj , in which case
(fi, τi) �F (fj , τj) for all i < j. Hence, �F is a wqo.

Proposition 1 ensures that partial evaluation using TbHEm terminates. The idea
of using a typed homeomorphic embedding generalises an idea sketched in [11] to
build an extended homeomorphic embedding based on a distinction between the
finite number of symbols actually occurring in the program and goal (the static
symbols), and the rest (the dynamic symbols). This could be reconstructed as
a TbHEm using a single type rule term −→ F ; I where F contains cases of the
form f(term,, term) where f is a static symbol, and I contains the infinite
number of cases where f is not static.The predicate signatures would allocate
the type term to all arguments. As discussed in Section 3.3, that approach lacks
control over the different contexts in which static symbols occur in the program.
Sometimes a static symbol should block embedding but other times it should
not.

5 Automatic Inference of Well-Typings

In this section, we outline and experimentally evaluate an approach which, given
an untyped program and a goal or set of goals, automatically infers suitable
types to be used in online partial evaluation in combination with TbHEm. The
approach is based on existing analysis tools for constraint logic programs.

We note first that the problem does not allow a precise, computable solution.
Determining the exact set of symbols that can appear at run-time at a specific
program point, and in particular determining whether the set is finite, is closely
related to termination detection and is thus undecidable. However, the better
the derived types are, the more aggressive partial evaluation can be without
risking non-termination. If the derived types have finite components that are
too small, then over-generalization is likely to result; if they are too large, then
specialization might be over-aggressive, producing unnecessary versions.

A procedure for constructing a monomorphic well-typing of an arbitrary logic
program was described by Bruynooghe et al. [5]1. The procedure scales well

1 Available on-line at http://saft.ruc.dk/Tattoo/

34 E. Albert et al.

(roughly linear in program size) and is robust, in that every program has a
well-typing, and the procedure works with partial programs (modules). We first
apply this procedure to illustrate the use of well-typings in the context of our
running example and, then, we perform an experimental evaluation to assess the
gains that we achieve in the specialization of interpreters by using well-typings
in combination with TbHEm.

5.1 Well-Typings for Working Example

In the original type inference procedure, an externally defined predicate such as
is/2 is treated as if defined by a clause X is Y :- true and is thus implicitly
assumed not to generate any symbols not occurring elsewhere in the program.
In deriving types for partial evaluation, we provide a type for such built-ins in
the form of a dummy additional “fact” for is/2, namely num is num :- true.
The constant num (assumed not to occur elsewhere in the program) will thus
propagate during type inference into those types that unify with the types of the
is predicate arguments. In the resulting inferred types, we interpret occurrences
of the constant num as being an abbreviation for an infinite set of cases.

Example 1. A type is inferred for the interpreter sketched in Figure 1, together
with the particular bytecode program of Fig. 2. Note that the program counter
is sometimes computed in the interpreter using the predicate is/2 as an offset
from the current program counter value and hence its type is in principle any
number. When the extra fact num is num :- true is added to the program,
the inferred type τPC for the program counter argument PC is as follows.

τPC --> -4; 0; 1; 2; 3; 4; 5; 6; 7; 8; num

Type τPC can be naturally interpreted as consisting of a finite part (the named
constants) and an infinite part (the numbers other than the named constants).
In other words, the partition F of the rule is {−4, 0, 1, 2, . . . , 8} and I = num\F .
Using the rule structured in this way, TbHEm ensures that the program counter
is never abstracted away during partial evaluation, so long as its value re-
mains in the expected range (the named constants). The atom execute(st(1, [0],
[N, 0]), Sf) does not embed execute(st(0, [], [N, 0]), Sf) by using the type defi-
nition above, thus, the derivation can proceed. This avoids the need for gen-
eralizing the PC what would prevent us from having a quality specialization
(decompilation) as explained in Sect. 2. The derivation will either eventually end
or the PC value will be repeated due to a backwards jump in the code (loops).
In this case, �T will flag the relevant atom as dangerous, e.g., execute(st(2,
[], [N, 0]), Sf) �T execute(st(2, [], [N, 1]), Sf), as can be seen in Fig. 3. If, however,
a different value arose, perhaps due to an addressing error, the infinite part of
the type rule num is encountered and embedding (followed by generalization of
the program counter argument) would take place.

The decompiled program that we obtain using the inferred well-typings and
combined with TbHEm is shown at the bottom of Fig. 3. We can observe that
the decompilation is optimal in the sense that the interpretation layer has been
completely removed and there is no superfluous residual code. Note that a more

Type-Based Homeomorphic Embedding 35

sophisticated analysis could infer that τPC becomes of finite component, i.e., I = ∅
by taking F = {−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. This can be done by com-
puting all combinations of bytecode indeces and offsets present in the program. In
fact, F = {0, 1, 2, 3, 4, 5, 6, 7, 8} is also a correct finite component. Though this in-
formation indicates that τPC is of finite signature (see Section 6 below), the quality
of the decompiled program does not require this extra accuracy.

5.2 Experimental Results

We have implemented the proposed TbHEm embedding relation within the par-
tial evaluator available in CiaoPP [19] and combined it with the results obtained
from the well-typing analyzer in [5]. Table 1 shows the practical benefits that we
can obtain in the context of the specialization of interpreters. Each row in the
table corresponds to the specialization of a bytecode interpreter w.r.t. different
bytecode programs. Counter corresponds to the program presented in Fig. 2.
We use a set of classical iterative algorithms as additional benchmarks: Exp,
Gcd and Fib compute respectively the exponential, greatest-common-divisor
and Fibonacci, and ExpAlt corresponds to a different implementation of the
exponential. The last two benchmarks, LinSearch and BinSearch, compute
respectively the classical linear and binary searches over integer arrays. There-
fore, to handle them, we use an extended version of our bytecode interpreter
which handles integer array manipulation. Thus, it includes a heap in the state
as well as the bytecode instructions required to manipulate arrays. We have ex-
perimented as well extending the interpreter with more advanced features such
as exception handling, object orientation, etc. We believe that the results ob-
tained are generalizable to interpreters which manipulates numbers in general,
and in particular to low-level language interpreters.

For each benchmark, we study the behavior of �T w.r.t. �, �num and �∗
S

by measuring two aspects which are crucial in the specialization of interpreters,
the specialization time and the residual program size. Both aspects are directly
related to the quality of the decompilation. Then, from left to right, the first two
columns, Name and Size, show the name of the benchmark and the size (in
KBytes) of the Prolog representation of the bytecode program. The following
9 columns show specialization times (in seconds) and residual program sizes
(in KBytes) for the different strategies �, �num, �∗

S and �T . We write “-”
when the specialization does not terminate. Note that, in the group of columns
corresponding to �T , we have an additional column Twt which shows the time
taken by the well-typing analysis which should be added to the specialization
time in order to obtain a proper evaluation of �T . It should be noted also that
the usage of �∗

S would require a preprocessing time currently not being taken
into account which should be no more than the times in Twt. Since we do not
have an implementation of �∗

S the results obtained for it have been obtained
using the TbHEm writing by hand the corresponding types. Finally, the last two
columns show the gains (in terms of time and size) of the embedding relation
�T w.r.t. �num (in column T/S(�num)) and �∗

S (in column T/S(�∗
S)). The

gain is computed as Old-Cost/New-Cost. As we can observe in the table, �T

36 E. Albert et al.

Table 1. Measuring the effects of �T with the bytecode interpreter

Benchmark � �num �∗
S �T Gains

Name Size Tm Size Tm Size Tm Size Twt Tm Size T/S(�num) T/S(�∗
S)

Counter 0.27 - - 0.12 1.79 0.60 1.26 0.03 0.09 0.28 1.4/6.3 6.7/4.4

Exp 0.39 0.14 0.50 0.24 5.51 0.14 0.50 0.03 0.14 0.50 1.7/11.0 1.0/1.0

Gcd 0.35 0.13 0.38 0.23 4.80 0.14 0.38 0.03 0.11 0.29 2.2/16.3 1.4/1.3

ExpAlt 0.44 - - 0.26 6.13 3.75 4.50 0.03 0.13 0.34 2.0/17.8 29.0/13.1

Fib 0.52 - - 0.49 10.72 0.99 1.41 0.03 0.15 0.51 3.2/21.2 6.6/2.8

LinSearch 0.70 - - 0.54 13.69 3.99 9.04 0.04 0.25 1.70 2.1/8.1 15.7/5.3

BinSearch 2.00 3.14 9.26 5.05 112.50 3.20 9.26 0.04 1.59 5.51 3.2/20.4 2.0/1.7

guarantees termination and behaves significantly better than �num and �∗
S both

in time and size. Furthermore, �T behaves as well as � in the examples in which
� terminates, even after adding the additional cost taken by the well-typing
analysis. An important observation as regards the gains w.r.t. �∗

S is that for some
benchmarks such gains are large while for others they are almost insignificant.
The reason for this lack of improvement is that in the corresponding atoms, the
local variables within the state are not instantiated to concrete values almost
from the beginning. Therefore, the over-specialization problem of �∗

S pointed in
Sect. 3.3 is not exposed. In fact, note that these cases correspond precisely to
the cases where � terminates (due to the same reason).

6 Type-Based Homeomorphic Embedding in Practice

An important observation is that, in order to take full advantage of TbHEm in
practice, it is not always necessary to know the actual type definitions, but only
sufficient information for the relations �F and �S proposed in Sect. 4.2 to be
well defined. In particular it suffices to know whether the infinite component
of type rules is (transitively) empty or not. Moreover, it would be desirable to
define a condition on types specifying that a type and all the types on which
it depends are defined over a finite signature. In this case, we can safely revert
to the simpler HEm applied directly to terms of such types. In the following we
define such a condition.

Definition 5 (finite signature). Given a type τ defined by a type rule τ −→
F ; ∅ we say that τ is of finite signature, denoted f sig(τ), iff F = {f1(τ11,
. . . , τ1k1), . . . , fn(τn1, . . . , τnkn)} and all types τ11, . . . , τnkn are of finite
signature.

Hence, if a type τ is of finite signature the (possibly infinite) set of terms of type
τ contains only a finite set of functors. As the following Proposition implies, we
can then use � instead of �T when comparing terms in the context of finite
signatures.

Proposition 2. Given two typed terms t1 : τ1 and t2 : τ2, if f sig(τ2) holds then
t1 :τ1 �T t2 :τ2 ⇔ t1 � t2.

Type-Based Homeomorphic Embedding 37

In the following, for every type τ for which f sig(τ) holds, we simply write f sig
instead of the particular type. We now propose an extension to the definition of
�T to consider f sig types. This is done simply by adding the following rule to
Def. 4: 4. s :τ1 �T t : f sig if s � t.

In order to put these ideas into practice it is convenient to also have the type
i sig which is assigned to an argument when we cannot guarantee it is of finite
signature and we do not have further information available about its type. Note
that we are assuming a scenario where infinite signatures can include functors
as well as numbers.

Definition 6 (i sig). The type i sig is defined by the following type rule: i sig −→
∅; I where I = {f1(τ11, . . . , τ1k1), . . . , fn(τn1, . . . , τnkn), . . .} and fi are all possi-
ble functors and all types τ11, . . . , τnkn are i sig.

Note that since every case of the type rule belongs to the infinite component
then s : τ �T t : i sig will always hold (as �F holds for every s, τ and t). Hence,
termination is trivially guaranteed for terms of type i sig. In practice, in programs
with infinite signatures, unless the user (or an automatic analysis) explicitly
writes more concrete type declarations, a default typing will be assumed such
that all predicates p/n of a program have the predicate signature p(τ1, . . . , τn)
with τi = i sig, (0 ≤ i ≤ n). Then, more concrete declarations are allowed both
by declaring particular types and signatures (always preserving the well-typing
assumption, see Sect. 4) or by using the special type f sig.

Example 2. Consider again the interpreter in our motivating example. Though
it is natural to use integer numbers to represent program counters, the set of
instructions is finite in any bytecode program. Therefore the PC can be safely
declared as f sig. Thus we may write the following predicate signature and type
definition:

execute(τst, τst).
τst −→ {st(f sig, i sig, i sig)}; ∅.

With this type declaration we are able to obtain the same results as in Sect 5.1 in
a more efficient way, as we can get rid of the overhead produced by the compar-
isons checking that the current PC belongs to the finite part of the corresponding
type. In addition, the type declaration holds for all input programs, whereas be-
fore a separate type inference was needed for each input object program.

Another interesting observation is that the relation �∗
S may be defined as a

particular case of TbHEm by simply declaring the following particular type and
assuming that every argument of every predicate is of this type: s symb −→ F ; I
where F = {f1(τ11, . . . , τ1k1), . . . , fn(τn1, . . . , τnkn)} with f1, . . . , fk being all the
functor symbols which explicitly occur in the program text plus initial goal(s)
and the types τ11, . . . , τnkn , . . . are s symb. I contains the infinite set of all other
possible functors, with auxiliary types i sig in all cases.

6.1 Automatic Inference of Finite Signature

If, in a program with builtins, we can use some static analysis which allows us
to determine that the type of an argument has a finite signature, we can provide

38 E. Albert et al.

this information to the partial evaluator as an f sig declaration, without having
to specify the exact type. E.g., given a logic program processing numeric val-
ues, analyses exist that make over-approximations of the set of values that the
program arguments can have. Polyhedral analyses are perhaps the most widely
known of these and they have successfully been applied to constraint logic pro-
grams [4]. Let us assume for the sake of this discussion that a polyhedral analysis
can return, for a given program and goal, an approximation to the set of calls to
each n-ary predicate p, in the form: p(X1, . . . , Xn) ← c(X1, . . . , Xn), where the
expression c(X1, . . . , Xn) is a set of linear constraints (describing a possibly not
closed polyhedron). From this information it can be determined whether each
argument Xi is bounded or not by projecting c(X1, . . . , Xn) onto Xi. If it is
bounded (from above and below), and it is known that the ith argument takes
on integral values, then it can take only a finite set of values and thus can be
declared as f sig.

Example 3. Consider the following clauses defining a procedure for computing
an exponential.

exp(Base,Exp,Res) : − exp (Base,Exp,1,Res).
exp (,0,Ac,Ac).
exp (Base,Exp,Ac,Res) : − Exp > 0, Exp′ is Exp-1, Ac′ is Ac*Base,

exp (Base,Exp′,Ac′,Res)

Type inference yields the following signature for the predicate exp /4: exp

(t24,t24, t24,t24) with the type t24 --> 0; 1; num. A polyhedral analysis
of the same program with respect to the goal exp(Base,10,Res) yields the fol-
lowing approximation to the queries to exp /4: exp (Base,Exp,Ac,Res) :- Exp >

-1, Exp =< 10. Combining this with the inferred type, and assuming that the
second argument can take only integer values. the second argument (Exp) can be
declared as f sig, and hence we can revert to HEm and do not abstract away the
value of the second argument of exp /4. This allows maximum specialization to
be achieved.

6.2 Experimental Results

We have incorporated the proposed predefined types f sig and i sig within our
partial evaluator and instrumented TbHEm to properly handle them as proposed
above. Table 2 shows the practical benefits that we obtain on a set of numeric
programs which we make extensive use of the arithmetic builtin is/2. exp and
fib correspond to the iterative implementations (using accumulators) of the ex-
ponential and Fibonacci functions respectively. vnr computes a combinatorial
function, in this case without accumulators. list exp takes a list of numbers
and an exponent and computes a list in which every element is powered to the
corresponding exponent (using the predicate exp/3 defined in exp) and also
computes the length of the list by using an accumulator. Finally, dfs performs
a depth-first search avoiding state repetitions in a two dimensional space. Pred-
icate path/4 computes the path and its cost (using an accumulator) given the
initial and final states.

Type-Based Homeomorphic Embedding 39

Table 2. Measuring the effects of �T with numeric programs

Bench Entry Torig Tres� Tres�num PE-type Tres�T

exp
exp(11,1000,) 19.60 14.60 19.20

exp (i sig,f sig,i sig,i sig)
14.20

exp(11, ,) 19.20 - 19.20 19.00

fib
fib(1000,) 17.20 14.20 16.00

fib (f sig,i sig,i sig,i sig)
14.00

fib(,) 16.80 - 16.00 15.60

vnr
vnr(10000,1000,) 31.80 14.20 32.40

vnr(i sig,f sig,i sig)
14.00

vnr(10000, ,) 30.00 - 30.00 32.20

dfs
path((1,1),(4,4), ,) 49.79 15.60 43.39

path (f sig,f sig,i sig,i sig,...)
15.80

path(, , ,) 43.39 - 39.79 42.19

list exp
lel([1,...,40|],200, ,) 32.40 - 32.40

lel (i sig,i sig,i sig,i sig)
14.40

lel(,200, ,) 31.80 - 31.60 26.80

In this case, in order to measure the quality of the specialization we com-
pare the execution times of the specialized programs (Tres) with the execution
times of the original programs (Torig) for sufficiently large inputs. From left to
right, the first two columns, Bench and Entry, show respectively the name of
the benchmark and the entry for which the program will be specialized. Then,
for each pair benchmark-entry, we show the execution times (in seconds) of the
original programs in Torig and of the corresponding residual programs, by using
the three relations Tres�, Tres�num and Tres�T . We also show the particular
type definition which has been used to guide �T . Note that in this case we do
not consider �∗

S since it does not produce any significant improvement w.r.t.
�num (constants do not play any role in the involved terms). All times have
been computed as the arithmetic means of five runs. For each run, in order to
accurately compare the involved programs we run five consecutive times the call
findall(, Goal,). The particular goals used for measuring the execution times
have been chosen to match the entries proposed for each benchmark. As it can
be seen, �T guarantees termination and outperforms significantly �num. As ex-
pected, � exposes termination problems for some entries as showed in column
Tres�. In the examples in which � terminates, �T behaves as well as �. In
some examples, no improvements are obtained in the residual programs. This is
explained by the fact that the corresponding entries do not provide static infor-
mation to be used in the specialization. In these examples, it is usual to observe
the (unnecessary) over-aggressive nature of � (even endangering termination in
presence of infinite signatures) while, we can see, that the particular type decla-
rations can prevent such undesired behavior in �T . An interesting observation
is that, although many of the examples in this table may be handled in offline
PE (by providing the corresponding annotations), there are cases, as dfs, where
it is not possible to obtain a ranking function for the key arguments. Luckily,
we may infer boundedness which is a sufficient condition to effectively use our
TbHEm.

40 E. Albert et al.

7 Discussion and Related Work

Guaranteeing termination is essential in a number of tasks which have to deal
with possibly infinite computations. These tasks include PE, abstract model
checking, rewriting, etc. Broadly speaking, guaranteeing termination can be tack-
led in an offline or an online fashion. The main difference between these two
perspectives is that in offline termination we aim at statically determining ter-
mination. This means that we do not have the concrete values of arguments at
each point of the computation but rather just abstractions of them. Tradition-
ally, these abstractions refer to the size of values under some measure such as list
length, term size, numeric value for natural numbers, etc. In contrast, in online
termination, we aim at dynamically guaranteeing termination by supervising the
computation in such a way that it is not allowed to proceed as soon as we can
no longer guarantee termination. The main advantage of the offline approach
is that if we can prove termination statically, there is no longer any need to
supervise the computation for termination, which results in important perfor-
mance gains. However, the online approach is potentially more precise, since we
have the concrete values at hand. In offline PE, the problem of termination of
local unfolding has been tackled by annotating arguments as “bounded static”.
The work of Glenstrup and Jones [7] is the main reference, though the idea of
bounded static variation goes back a long way. To detect bounded static argu-
ments it is necessary to prove some decrease in well-founded ordering (e.g. using
size-change techniques). Quasi-termination is weaker than standard termination
but still quite hard to prove. Recent work on this has been done by Vidal [21]
and by Glenstrup and Jones [7]. On the other hand, ensuring termination in
online PE is easier because we can use “dynamic” termination detection based
on supervisors of the computations such as for example embeddings. This means
that we do not need any well-founded orderings but only well-quasi-orderings. In
effect, in our technique it is only necessary to show boundedness of an argument’s
values instead of decrease.

In the context of online PE, we have compared TbHEm with the extension of
the embedding relation to deal with infinite signatures explained in [11], known
as extended embedding with static symbols in Sect. 3.3, which is based on a dis-
tinction between the different static symbols which occur in the program. As we
have shown in the paper, the main advantage of TbHEm is that it achieves a
more refined treatment, as it allows treating different arguments in a different
way depending on their particular types, which can be automatically inferred by
semantic-based analysis, while previous proposals are purely syntactic. Addition-
ally, we have shown that TbHEm can be applied to the specialization of numeric
programs, by means of finite signature annotations, in which static constants do
not play any role.

Acknowledgments. The authors would like to thank the anonymous referees
for their useful comments. This work was funded in part by the Information
Society Technologies program of the European Commission, Future and Emerg-
ing Technologies under the IST-15905 MOBIUS project, by the Danish Natural

Type-Based Homeomorphic Embedding 41

Science Research Council under the FNU-272-06-0574 SAFT project, by the
Spanish Ministry of Education under the TIN-2005-09207 MERIT project, and
by the Madrid Regional Government under the S-0505/TIC/0407 PROMESAS
project.

References

1. Albert, E., Gómez-Zamalloa, M., Hubert, L., Puebla, G.: Verification of Java Byte-
code Using Analysis and Transformation of Logic Programs. In: Hanus, M. (ed.)
PADL 2007. LNCS, vol. 4354, pp. 124–139. Springer, Heidelberg (2007)

2. Albert, E., Hanus, M., Vidal, G.: A practical partial evaluation scheme for
multi-paradigm declarative languages. Journal of Functional and Logic Program-
ming 2002(1) (2002)

3. Albert, E., Puebla, G., Gallagher, J.: Non-leftmost Unfolding in Partial Evaluation
of Logic Programs with Impure Predicates. In: Hill, P.M. (ed.) LOPSTR 2005.
LNCS, vol. 3901, pp. 115–132. Springer, Heidelberg (2006)

4. Benoy, F., King, A.: Inferring argument size relationships with CLP(R). In: Gal-
lagher, J.P. (ed.) LOPSTR 1996. LNCS, vol. 1207, pp. 204–223. Springer, Heidel-
berg (1996)

5. Bruynooghe, M., Gallagher, J.P., Van Humbeeck, W.: Inference of Well-Typings
for Logic Programs with Application to Termination Analysis. In: Hankin, C.,
Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 35–51. Springer, Heidelberg
(2005)

6. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, Vol. B, pp. 243–320. Elsevier, Amsterdam
(1990)

7. Glenstrup, A.J., Jones, N.D.: Termination analysis and specialization-point inser-
tion in offline partial evaluation. ACM Trans. Program. Lang. Syst. 27(6), 1147–
1215 (2005)

8. Hill, P.M., Topor, R.W.: A semantics for typed logic programs. In: Pfenning, F.
(ed.) Types in Logic Programming, pp. 1–62. MIT Press, Cambridge (1992)

9. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice Hall, New York (1993)

10. Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.
Transactions of the American Mathematical Society 95, 210–225 (1960)

11. Leuschel, M.A.: Homeomorphic Embedding for Online Termination of Symbolic
Methods. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence
of Computation. LNCS, vol. 2566, pp. 379–403. Springer, Heidelberg (2002)

12. Leuschel, M., Bruynooghe, M.: Logic program specialisation through partial deduc-
tion: Control issues. Theory and Practice of Logic Programming 2(4&5), 461–515
(2002)

13. Leuschel, M., Martens, B., De Schreye, D.: Controlling Generalisation and Poly-
variance in Partial Deduction of Normal Logic Programs. ACM Transactions on
Programming Languages and Systems 20(1), 208–258 (1998)

14. Leuschel, M.: On the power of homeomorphic embedding for online termination.
In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 230–245. Springer, Heidelberg
(1998)

15. Lloyd, J.W., Shepherdson, J.C.: Partial evaluation in logic programming. The Jour-
nal of Logic Programming 11, 217–242 (1991)

42 E. Albert et al.

16. Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (1987) (sec-
ond, extended edition)

17. Mycroft, A., O’Keefe, R.A.: A polymorphic type system for Prolog. Artif. In-
tell. 23(3), 295–307 (1984)

18. Puebla, G., Albert, E., Hermenegildo, M.: Efficient Local Unfolding with Ancestor
Stacks for Full Prolog. In: Etalle, S. (ed.) LOPSTR 2004. LNCS, vol. 3573, pp.
149–165. Springer, Heidelberg (2005)

19. Puebla, G., Albert, E., Hermenegildo, M.: Abstract Interpretation with Specialized
Definitions. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 107–126. Springer,
Heidelberg (2006)

20. Somogyi, Z., Henderson, F., Conway, T.: The Execution Algorithm of Mercury: an
Efficient Purely Declarative Logic Programming Language. JLP 3 (October 1996)

21. Vidal, G.: Quasi-Terminating Logic Programs for Ensuring the Termination of
Partial Evaluation. In: Proc. of the ACM SIGPLAN 2007 Workshop on Partial
Evaluation and Program Manipulation (PEPM 2007), pp. 51–60. ACM Press, New
York (2007)

Towards a Normal Form for Mercury Programs

François Degrave and Wim Vanhoof

University of Namur,
Faculty of Computer Science,

Rue Grangagnage 21, B-5000 Namur, Belgium
{fde,wva}@info.fundp.ac.be

Abstract. In this work we define a program transformation that nor-
malises a Mercury program by reordering clauses, body goals, and predi-
cate arguments. The transformation, which preserves the well-modedness
and determinism characteristics of the program, aims at reducing the
complexity of performing a search for duplicated or similar code frag-
ments between programs. In previous work, we have defined an analysis
that searches for such duplicated functionality basically by pairwise com-
paring atoms and goals. While feasible in theory, the number of permu-
tations to perform during the search renders it hard if not impossible to
use in practice. We conjecture that the transformation to normal form,
defined in this work, allows to substantially reduce the number of per-
mutations, and hence the complexity of the search.

1 Introduction and Motivation

The problem of deciding whether two code fragments are equivalent, in the sense
that they implement the same functionality, is well-known to be undecidable.
Nevertheless, there seems to be an interest in developing analyses that are capa-
ble to detect such equivalence under particular circumstances and within a cer-
tain error margin [3,1,12]. Applications can be found in plagiarism detection and
tools for program refactoring. Work in this area can be based on parametrised
string matching, an example being the MOSS system [8], or perform a more
involved analysis on a graph representation of a program [2,13]. Most of these
latter works, including the more recent [11], concentrate on finding behavioral
differences between strongly related programs and are often limited to (subsets
of) imperative programs.

In recent work [10], we have studied the conditions under which two (frag-
ments of) logic programs can be considered equivalent. The main motivation of
that and the current work is to develop an analysis capable of detecting pro-
gram fragments that are susceptible for refactoring, aiming in particular to the
removal of duplicated code or to the generalisation of two related predicates into
a new (higher-order) one. The basic idea is as follows: two code fragments (be
they goals, clauses or complete predicate definitions) are equivalent if they are
isomorphic in the sense that one can be considered to be a renaming of the other

King, A. (Ed.): LOPSTR 2007, LNCS 4915, pp. 43–58, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

44 F. Degrave and W. Vanhoof

modulo a permutation of the body goals and the arguments of the predicate.
Take for example the definitions of app1 and conc1 below:

app1([],Y,Y).
app1([Xe|Xs],Y,[XN|Zs]):- XN is Xe + 1, app1(Xs,Y,Zs).

conc1(A,[],A).
conc1([NB|As],[Be|Bs],C):- conc1(As,Bs,C), NB is Be + 1.

Both definitions basically implement the same ternary relation in which one
argument is the result of concatenating both other arguments and incrementing
each element by one. This can easily be deduced from the source code, since
the definition of conc1 can be obtained from that of app1 by variable renaming,
goal reordering and a permutation of the argument positions. Note that our
notion of equivalence is limited to the syntactical equivalence of predicates. Other
characteristics like computational complexity etc. are not taken into account. As
a second example, let us consider two predicates that do not implement the same
relation but that nevertheless share a common functionality.

rev all([],[]).
rev all([X|Xs],[Y|Ys]):- reverse(X,Y), rev all(Xs,Ys).

add and square([],[]).
add and square([X|Xs],[Y|Ys]):- N=X+X, Y=N*N, add and square(Xs,Ys).

The definitions above implement two different relations: rev all reverses all the
elements of an input list, while add and square transforms each element x of
an input list into 4x2. They nevertheless have a common core which consists of
traversing a list and transforming each of its elements. As such, both definitions
can be generalised into a single new definition (namely the map/3 predicate):

map([], ,[]).
map([X|Xs],P,[Y|Ys]):- P(X,Y), map(Xs,Ys).

and calls to rev all and add and square can be replaced by calls to map with the
second argument instantiated to, respectively, reverse and a lambda expression
pred(X::in,Y::out) is det :- N=X+X,Y=N*N (in Mercury syntax).

In [10] we have defined an analysis that basically searches for isomorphisms
between each possible pair of subgoals in a given program. As outlined above,
two goals are isomorphic if they are syntactically identical modulo a renaming
and a permutation of the atoms involved. While the analysis can be used to
search for duplication within two predicate definitions, its complexity – mainly
due to the fact that one needs to consider every possible permutation of the
predicate’s body atoms – renders it hard if not impossible to use in practice.

The work we report on in this paper is motivated by the desire to port the
concepts and the analysis of [10] to the functional/logic programming language
Mercury while, at the same time, rendering such an analysis more practical.
The basic idea is to define a program transformation that reorders clauses, body
atoms and predicate arguments in a unique and predefined way such that 1) the
operational characteristics (well-modedness and determinism) of the program

Towards a Normal Form for Mercury Programs 45

remain unchanged, but 2) the number of permutations to perform during pred-
icate comparison is substantially reduced.

2 Mercury Preliminaries

Mercury [9] is a strongly typed and moded functional/logic programming lan-
guage. Although it is an expressive and syntactically rich language, its core
syntax can be defined as follows:

Definition 1 (Core Mercury syntax)

Atom ::= Y = X | Y = f(X) | Y = p(X) | Z = Y (X) | p(X) | Y (X) |
true | fail

Goal ::= A | (G1, . . . , Gn) | (G1; . . . ; Gn) | not(G) | if(G1, G2, G3) |
Clause ::= p(X):- G.

where A ∈ Atom, G, Gi(∀i) ∈ Goal, and X, Y , Z represent variables, X a
sequence of distinct variables, and f and p respectively a functor and predicate
symbol.

The syntax defined in Definition 1 is derived from the so-called superhomoge-
neous form, which is an intermediate form used by the Mercury compiler.1 It
defines a program as a set of predicate definitions, with each predicate defini-
tion consisting of a set of clauses. The arguments in the head of each clause
and in predicate calls in the body are all distinct variables. Explicit unifications
are generated for these variables in the body, and complex unifications are bro-
ken down into several simpler ones. Among these unifications we differ between
term construction and matching (X = Y and X = f(Y)) on the one hand and
closure construction (Y = p(X) and Z = Y (X)) on the other. Other goals in-
clude first-order and higher-order predicate calls (p(X) and Y (X) respectively),
conjunction, disjunction, negation, if-then-else and the special goals true and
fail.

The full Mercury language contains a number of additional constructs, such
as function definitions, record syntax, state variables, DCG notation, etc. [5].
However, each of these constructions can be translated into the above syntax
by introducing new predicates, adding arguments to existing predicates and in-
troducing new unifications [5]. Note that these transformations are in principle
reversible.

Example 1. Let us reconsider the example from above, this time transformed to
core syntax:

app1(X,Y,Z):- X=[], Z=Y.
app1(X,Y,Z):- E=1, Z=[Xn|Zs], X=[Xe|Xs], Xn=(Xe + E), app1(Xs,Y,Zs).

conc1(A,B,C):- B=[], A=C.
conc1(A,B,C):- B=[Be|Bs], E=1, Bn=(Be + E), conc1(As,Bs,C), A=[Bn|As].

1 The most important difference being that we still allow for predicates to be defined
by multiple clauses rather than by a single clause.

46 F. Degrave and W. Vanhoof

From a programmer’s point of view, the order in which the individual goals in
a conjunction are written is of no importance. While this is one of the main
characteristics that makes the language more declarative than other (logic) pro-
gramming languages, it clearly renders the search for code isomorphisms in the
sense outlined above even more dependent on the need to consider all permuta-
tions of the goals within a conjunction.

The fact that Mercury is a strongly moded language provides us with a start-
ing point for our transformation into normal form. In Mercury, each predicate
has an associated mode declaration2 that classifies each argument as either in-
put to the call, denoted by in (the argument is a ground term before and after
the call) or output by the call which is denoted by out (the argument is a free
variable that will be instantiated to a ground term at the end of the call). Given
a predicate’s mode declaration it is possible to derive how the instantiation of
each variable changes over the execution of each individual goal in the predi-
cate’s body. In what follows we will use in(G) and out(G) to denote, for a goal
G, the set of its input, respectively output variables. As such in(G) refers to the
variables whose values are consumed by the goal G, whereas out(G) refers to
the variables whose values are produced by G. When appropriate, we will write,
for a goal G, in(G) and out(G) to denote the sequence of input, respectively
output, variables in the order they are occurring in the goal G. For more details
about modes and mode analysis in Mercury, we refer to [7].

Example 2. If we consider the app1 predicate (see Example 1) for the mode
app1(in,in,out) – reflecting the fact that the two first arguments are consid-
ered input whereas the third is considered output – we have:

G in(G) out(G)
X = [] {X} ∅
Z = Y {Y } {Z}
X = [Xe|Xs] {X} {Xe, Xs}
E = 1 ∅ {E}

G in(G) out(G)
Xn = Xe + E {Xe, E} {Xn}
app1(Xs,Y,Zs) {Xs, Y } {Zs}
Z = [Xn|Zs] {Xn, Zs} {Z}

In order to be accepted by the compiler, Mercury programs must be well-moded.
Intuitively, this means that the goals in a predicate’s body can be rearranged
in such a way that values are produced before they are consumed when the
predicate is executed by a left-to-right selection rule [6]. In case of a conjunction,
the well-modedness constraint could be formalized as follows:

Definition 2. A conjunction (G1, ..., Gn) verifies the well-modedness constraint
if

∀1 ≤ i ≤ n, ∀k > i : in(Gi) ∩ out(Gk) = ∅.
Furthermore, we say that a conjunction is well-moded if there exists a reordering
of its goals that verifies the well-modedness constraint.
2 In general, a predicate may have more than one mode declaration, but these can

easily be converted into separate predicate (or, in Mercury terminology, procedure
definitions.

Towards a Normal Form for Mercury Programs 47

Example 3. When considering the mode app1(in,in,out), the second disjunct
of the app1 definition in Example 1 does not verify the well-modedness constraint
since the goal Z=[Xn|Zs] consumes variables Xn and Zs, which are both produced
by goals further to the right in the conjunction. However, the following reordering
does:

app1(X,Y,Z):- X=[Xe|Xs], E=1, Xn=(Xe + E), app1(Xs,Y,Zs), Z=[Xn|Zs].

It is the task of the compiler to rearrange conjunctions in a program such that
they verify the well-modedness constraint, thanks to the information provided
by the mode analyser.

In what follows we will limit ourselves to well-moded programs. Note how-
ever that well-modedness in itself does not suffice to obtain a unique reorder-
ing. In the example above one could, e.g. switch the atoms XN=(Xe + E) and
app1(Xs,Y,Zs) while the conjunction would remain well-moded. Consequently,
well-modedness can be used as a starting point for our normalization, but it
needs to be further constrained in order to obtain a unique reordering.

3 Transformation to Normal Form

As a first step in our transformation to normal form, we will assume that pro-
grams are converted to disjunctive normal form, in which every clause body is
considered to be a conjunction of literals. That is, we restrict the syntax of goals
to

Goal ::= (L1, . . . , Ln)
Literal := A | not(A)

where A denotes an atom ∈ Atom, and L1,. . . ,Ln denote literals in Literal.
Note that this transformation can easily be accomplished by flattening conjunc-
tions and disjunctions, replacing if-then-else goals by disjunctions and replacing
explicit disjunctions and non-atomic goals within a negation by calls to newly
generated predicates.

As a second step in the transformation, we redistribute the atoms of each
clause body into a sequential structure, based on a reinforcement of the well-
modedness constraint.

Definition 3. We define a proper rearrangement of a conjunction L1, . . . , Ln

to be a sequence of multisets 〈S1, . . . , Sk〉 such that
⋃

i∈{1,...,k}
Si = {L1, . . . , Ln}

and such that ∀Si we have

1. ∀L, L′ ∈ Si : in(L) ∩ out(L′) = ∅.
2. ∀L ∈ Si, ∀L′ ∈ Sk for k > i : in(L) ∩ out(L′) = ∅.
3. ∀L ∈ Si, i > 1 : ∃L′ ∈ Si−1 : in(L) ∩ out(L′)
= ∅.

48 F. Degrave and W. Vanhoof

Intuitively, a conjunction is properly arranged if its components can be par-
titioned into a sequence of sets of goals such that: (1) there are no dataflow
dependencies between the goals in a single set; (2) a goal belonging to a set Si

does not consume values that are produced by a goal belonging to a set Sk that
is placed after Si in the sequence; and (3) each goal in a set Si consumes at least
one value that was produced by a goal placed in the previous set Si−1. There are
two main points of difference between our notion of a proper arrangement and
that of well-modedness. First, we impose an order between sets of independent
goals and, secondly and more importantly, consumers are pushed forward in the
sequence as much as possible.

Example 4. Consider the definition of app1 of Example 1. We have that

〈{X = [], Z = Y}〉

is a proper rearrangement of the body of the first clause, whereas

〈{X = [Xe|Xs], E = 1}, {XN = (Xe + E), app1(Xs, Y, Zs)}, {Z = [XN|Zs]}〉

is a proper rearrangement of the body of the second clause.

Note that there always exists a proper rearrangement of a well-moded conjunc-
tion. Also note that the required partitioning into sets is unique. This observation
is captured formally by the following result:

Theorem 1. Let p(X) ← L1, . . . , Lm be a clause. Then there exists exactly one
proper rearrangement of the conjunction L1, . . . , Lm.

Proof. We split the proof in two parts.

1. We will first proof that there exists a proper rearrangement of the clause
body L1, . . . , Lm. The proof is by construction. Let us define

S1 = {L | in(L) ⊆ {X}}

and, for j > 1,

Sj = {L | in(L) ⊆ {X} ∪
j−1
⋃

i=1

out(Si)} \
j−1
⋃

i=1

Si.

These sets are well defined. Indeed:
(a) If the clause body is not empty (m
= 0), then S1
= ∅. Indeed, since

the clause is well-moded, we have that if the clause body is not empty,
then it should contain at least one literal that either does not consume
any values, or that consumes only values provided as argument to the
predicate.

(b) Furthermore, for k > 1, we have that if
⋃k−1

i=1 Si
= {L1, ..., Lm}, then
Sk
= ∅. Again, due to well-modedness, among the atoms that are not in
⋃k−1

i=1 Si, there is at least one that consumes only values produced before.

Towards a Normal Form for Mercury Programs 49

From (1) and (2) we can conclude that there exists a finite sequence of non-
empty sets S1, . . . , Sn (for some n ≥ 1) such that

⋃n
i=1 Si = {L1, . . . , Lm}.

Moreover, by construction we have that
(a) ∀L, L′ ∈ Si : in(L) ∩ out(L′) = ∅. It is obviously the case, since a set is

constructed by collecting the goals consuming only values produced in
the sets already constructed.

(b) ∀L ∈ Si, ∀L′ ∈ Sk for k > i : in(L) ∩ out(L′) = ∅. This is obvious for
the same reason as 1a.

(c) ∀L ∈ Sj , j > 1 ∃L′ ∈ Sj−1 : in(L) ∩ out(L′)
= ∅. Indeed, if that was
not the case, L would have been integrated into Sj−1 instead of Sj

2. We will now prove uniqueness of the proper rearrangement. The proof is by
contradiction. Let us assume that for a given clause, there exists two different
proper rearrangements of the clause body, PA1 = Seq1 = 〈S1, ..., Sn〉, and
PA2 = 〈S′

1, ..., S
′
m〉. Since PA1
= PA2, we have that ∃1 ≤ i ≤ min{m, n},

Si
= S′
i and Sj = S′

j , ∀j < i. In other words, we take Si to be the first
subset different from S′

i.
Since Si
= S′

i, there exists L ∈ S′
i such that L
∈ Si (or the other way

round, in what case the proof is similar). Since PA1 and PA2 are proper
rearrangements of the same conjunction, the literal L must also occur in
PA1, in a set to the right of Si : ∃k > i such that L ∈ Sk.

The fact that the literal L belongs to different sets in both proper re-
arrangements leads to a contradiction. Since L ∈ Sk, we have that ∃L′ ∈
Sk−1, in(L)∩out(L′)
= ∅ (in other words, L consumes a value produced by
L′, which is the second condition for a proper rearrangement). The literal
L′ necessarily appears in PA2 as well, in a set S′

k with k ≥ i, since, again,
Sj = S′

j, ∀j < i. There are two possibilities:
(a) Either k = i. In that case we have that L′ ∈ S′

i and L ∈ S′
i which

contradicts the fact that PA2 is a proper rearrangement (first condition:
there should be no dataflow dependencies between literals in the same
set).

(b) Or k > i, but in that case the literal L ∈ S′
i consumes a value produced

by a literal in L′ in a later set (L′ ∈ S′
k with k > i) which contradicts

the second condition of a proper rearrangement. �
The above result is important in our setting of constructing a normal form.
Intuitively, the fact that a clause has a unique proper rearrangement implies that
if two clauses are isomorphic (always in the sense that one being a renaming of
the other modulo a permutation of its body literals), then they have the same
proper rearrangements (modulo renaming).

Example 5. Reconsider the definition of conc1 from Example 1. One can easily
verify that

〈{B = [], A = C}〉
is a proper rearrangement of the body of the first clause, whereas

〈{B = [Be|Bs], E = 1}, {Bn = (Be + E), conc1(As, Bs, C)}, {A = [Bn|As]}〉

is a proper rearrangement of the body of the second clause.

50 F. Degrave and W. Vanhoof

When considering Examples 4 and 5, it is clear that for verifying whether two
predicates implement the same relation, the search for isomorphisms can be lim-
ited to a pairwise comparison of the corresponding sets of goals in the predicate’s
proper rearrangements.

As such our notion of proper rearrangement seems a good starting point for
a transformation that aims at rearranging predicate definitions in a unique way.
All that remains, is to impose an order on the goals within the individual sets of
a proper rearrangement. Since these goals share no dataflow dependencies, we
can use any order without influencing well-modedness. We choose lexicographic
ordering on goals in tree representation. Formally:

Definition 4. Given a literal L, we define its tree representation, denoted tr(L)
as a tree over strings defined as follows:

tr(not(L)) = (not, tr(L))
tr(Y = X) = (unifv, in(Y = X)) tr(true) = (true)
tr(Y = f(X)) = (unifc, f, in(Y = f(X))) tr(fail) = (fail)
tr(Y = p(X)) = (closc, p, in(Y = p(X))) tr(p(X) = (call, p, in(p(X)))
tr(Z = Y (X)) = (closv, in(Z = Y (X))) tr(Y (X) = (hocall, Y, in(Y (X))

Given two literals L and L′, we will write L < L′ if and only if tr(L) <l tr(L′)
where <l represents the lexicographic ordering over trees of strings.

Example 6. Reconsider the app1 predicate from Example 1 with the mode in-
formation as in Example 2. We have tr(X = []) = (unifc, [], X) and tr(Z = Y) =
(unifv, Y). Consequently, we have X = [] < Z = Y. Likewise, one can easily verify
that we have X = [Xe|Xs] < E = 1 and app1(Xs, Y, Zs) < Xn = (Xe + E).

The main idea of imposing an order on the literals of a conjunction, is to be able
to limit the search for isomorphisms between two conjunctions to a pairwise
comparison of the corresponding literals. As such, when verifying whether two
predicates implement the same relation (by verifying whether the two definitions
are isomorphic), there would be no more need to consider all permutations of
the body atoms since if the two predicate definitions are isomorphic, they should
have the same normal form (modulo a renaming of the variables). In order to
have this characteristic, the order relation < defined on the literals must be total
and hence it must take the variables into account. However, since the variable
names used in different predicate definitions are usually unrelated, using them
might make that the order we get is not the order wanted, as illustrated by the
following example.

Example 7. Consider the two conjunctions:
C1 ≡ A = a, B = b, C = f(A), D = f(B)
C2 ≡ X = b, Y = a, R = f(X), S = f(Y)

and suppose that the associated mode information is such that the first half of
C1 produces the values for A and B that are consumed in the second half of
C1. Likewise, we assume that the values Y and X are produced in the first half

Towards a Normal Form for Mercury Programs 51

of C2 and consumed in its second half. In other words, all variables are output
variables and the clauses’ proper rearrangements are as follows:

PA1 = 〈{A = a, B = b}, {C = f(A), D = f(B)}〉
PA2 = 〈{X = b, Y = a}, {R = f(X), S = f(Y)}〉

When we use the order relation < defined above to order the individual atoms
in each set of the proper rearrangements, we obtain

C′
1 ≡ A = a, B = b, C = f(A), D = f(B)

C′
2 ≡ Y = a, X = b, R = f(X), S = f(Y)

Even-though the two clauses are isomorphic, there does not exist a renaming ρ
such that C′

1ρ = C′
2. The problem is that the last two literals of C′

2 are in the
wrong order with respect to the order chosen for C′

1 due to choice of the variable
names.

The example above suggests that rather than basing the order relation on the
variable names chosen by the programmer, it would be better to rename the
variables in each clause in a consistent way reflecting the data flow within the
clause. This is precisely what our transformation to normal form will do. Before
we can define the transformation itself, we need one more concept though.

Definition 5. Let p/n be a predicate defined in the program. An argument per-
mutation for p/n is a bijection over {1, . . . , n}. For an argument permutation
π, we define the result of permuting by π the arguments of a call p(X1, . . . , Xn)
as the call p(Xπ−1(1), . . . , Xπ−1(n)).

Example 8. The permutation π = {(1, 3), (2, 1), (3, 2)} is an argument permuta-
tion for conc1. The result of permuting the arguments of a call conc1(X1,X2,X3)
by π is conc1(X2,X3,X1).

We will use the notion of an argument permutation to rearrange the arguments
of each predicate in such a way that the arguments are regrouped by their mode
and type. For the types, we assume an ordering <τ that is defined on all types
occurring in the program that is being normalized.

Definition 6. Let π be an argument permutation for a predicate p/n. We call
π suitable if the following conditions hold: let p(Xπ1 , . . . , Xπn) denote the result
of permuting by π the arguments in a call c ≡ p(X1, . . . , Xn), then

1. ∃k ≥ 0 such that {Xπ1 , . . . , Xπk
} = in(c) and {Xπk+1, . . . , Xπn} = out(c)

2. if we denote by τi the type of variable Xi in the call, then ∀1 ≤ i, j ≤ k and
∀k + 1 ≤ i, j ≤ n, if πi < πj then τπi <τ τπj .

In other words, an argument permutation is suitable if it places all input ar-
guments in front of the output arguments, and if the input, respectively output,
arguments are ordered according to a given ordering on their types.

It is easy to see that the following proposition holds:

52 F. Degrave and W. Vanhoof

Proposition 1. Let p/n be a predicate; then there exists at least one suitable
argument permutation π – as described in Definition 6 – for this predicate.

Note that the ordering on the predicate arguments defined by a suitable ar-
gument permutation is not necessarily unique, if there are multiple arguments
having the same type and mode.

Example 9. Let us consider the type and mode declarations for the predicates
app1 and conc1 defined in Example 1:

:- pred app1(list(int),list(int),list(int)).
:- mode app1(in,in,out) is det.

:- pred conc1(list(int),list(int),list(int)).
:- mode conc1(out,in,in) is det.

The argument permutation π given in example 8 is a suitable argument permuta-
tion for the conc1 predicate. The argument permutation π′={(1, 3), (2, 2), (3, 1)}
is also a suitable argument permutation for conc1. The identity function and the
permutation {(1, 2), (2, 1), (3, 3)} are suitable argument permutations for app1.

We are now in a position to define our transformation to normal form. We use
the following notation: for a clause c, we use head(c) and body(c) to denote,
respectively the head atom and body goal of the clause. If S represents a set
of literals and ρ a renaming, then Sρ represents the set of literals obtained by
renaming every literal in S by ρ. For a renaming ρ, we represents by codom(ρ)
the co-domain of ρ, i.e. {V | X/V ∈ ρ}. During the transformation, we use a
special kind of renaming ρ, in which codom(ρ) is a set of variables of the form
Vi for subsequent values of i and V a fresh variable symbol.

Definition 7 (transformation to normal form). Let p/n be a predicate and
π a suitable argument permutation for p. The normal form of p w.r.t. π is ob-
tained by repeatedly applying the following transformation to each clause in the
definition of p.

For a clause c, let h = p(Xπ1 , . . . , Xπn) denote the result of permuting
head(c) by π and let 〈S1, . . . , Sm〉 denote the proper rearrangement of body(c)
in which every recursive call of the form p(Y1, . . . , Yn) is replaced by the atom
rec(Yπ1 , . . . , Yπn).3 The clause c is transformed into a clause

p(Xπ1 , . . . , Xπn) ← C1, . . . , Cm

where (for 1 ≤ i ≤ m) Ci is a conjunction of literals obtained from Si in the
following way:

(Ci, ρi) ← reorder(Si, ρi−1)

where

1. ρ0 is a variable renaming for the input arguments of the clause, that is if
in(h) = 〈Xπ1 , . . . , Xπk

〉 then

ρ0 = {Xπ1/V1, . . . , Xπk
/Vk}.

3 We use rec to denote a special name, not used in the program being normalized.

Towards a Normal Form for Mercury Programs 53

2. Given a set of literals S and a renaming ρ, the function reorder is defined
as follows:

reorder(S, ρ) = (Cσ, ρ ∪ σ)

where the conjunction C is obtained by ordering the literals in Sρ by <l and
if codom(ρ) = {V1, . . . , Vi} then

σ = {O1/Vi+1, . . . , Ol/Vi+l}

for 〈O1, . . . , Ol〉 = out(C).

Note that the transformation to normal form is such that a unique order is
imposed on the body literals of each clause, first by computing the proper re-
arrangement of the body, and then imposing the lexicographic ordering on the
literals in each set of the rearrangement. During the process, variables are sys-
tematically and consistently renamed into variables of the form Vi in which the
index i represents the order in which the variable is introduced in the (reordered)
clause. This renaming scheme allows to abstract from the variable names as they
have been introduced by the programmer. As a result, the ordering < (see Def-
inition 4) orders identical literals (up to a variable renaming) according to the
order in which their respective input arguments appear in the clause.

Example 10. Let us reconsider the two clauses C1 and C2 from Example 7 and
their proper rearrangements

PA1 = 〈{A = a, B = b}, {C = f(A), D = f(B)}〉
PA2 = 〈{X = b, Y = a}, {R = f(X), S = f(Y)}〉

It can easily be verified that the transformation as defined above transforms PA1

into

C′
1 ≡ V1 = a, V2 = b, V3 = f(V1), V4 = f(V2)

The transformation of PA2 proceeds as follows. The set {X = b, Y = a} is trans-
formed into the conjunction V1 = a, V2 = b as such creating the renaming
ρ1 = {Y/V 1, X/V 2}. This renaming is applied to the second set of literals:
{R = f(X), S = f(Y)}, giving {R = f(V2), S = f(V1)} which is subsequently
reordered into the conjunction S = f(V1), R = f(V2) and, finally, renamed
into V3 = f(V1), V4 = f(V2). As a result, both clauses have an identical nor-
mal form.

Also note that recursive calls are replaced by a call to a special (predicate)
symbol rec and that the arguments are permuted according to π. The use of
the symbol rec for each recursive call, regardless the predicate, makes sure that
recursive calls are ordered in a consistent way, regardless the predicate being
normalized.

As a final note, observe that the normal form of a predicate is unique for a
given suitable permutation. Indeed, the choice of another permutation induces
another ordering on the renamed variables and, thus, another normal form, as
is illustrated by the following examples.

54 F. Degrave and W. Vanhoof

Example 11. The app1 predicate of Example 1 has two normal forms, the first
one with respect to the identity argument permutation, the second with respect
to the permutation {1, 2), (2, 1), (3, 3)}.

app1(V1, V2, V3) :- V3 = V2, V1 = [].
app1(V1, V2, V8) :- V3 = 1, V1 = [|](V4, V5), V6 = +(V4, V3),

rec(V2, V5, V7), V8 = [|](V6, V7).

app1(V1, V2, V3) :- V3 = V1, V2 = [].
app1(V1, V2, V8) :- V3 = 1, V2 = [|](V4, V5), V6 = +(V4, V3),

rec(V1, V5, V7), V8 = [|](V6, V7).

Likewise, the conc1 predicate of Example 1 has two normal forms, the first one
with respect to the argument permutation {(1, 3), (2, 2), (3, 1)}, the second one
with respect to the permutation {(1, 3), (2, 1), (3, 2)}.

conc1(V1, V2, V3) :- V3 = V1, V2 = [].
conc1(V1, V2, V8) :- V3 = 1, V2 = [|](V4, V5), V6 = +(V4, V3),

rec(V1, V5, V7), V8 = [|](V6, V7).

conc1(V1, V2, V3) :- V3 = V2, V1 = [].
conc1(V1, V2, V8) :- V3 = 1, V1 = [|](V4, V5), V6 = +(V4, V3),

rec(V2, V5, V7), V8 = [|](V6, V7).

The examples above illustrate that the transformation to normal form offers a
substantial help for detecting duplicated functionality. Indeed, the transforma-
tion makes the existence of isomorphisms explicit in the code, by reordering and
renaming corresponding clause bodies in exactly the same way. In other words,
detecting duplication between predicates in normal form does not require to con-
sider permutations of the conjunctions (nor of the predicate arguments), thereby
removing a layer of complexity.

4 Detecting Duplicated Functionality and Experimental
Results

The described transformation to normal form was implemented in Mercury. In
order to perform some experiments and to provide us with a proof of concept,
we have also implemented a number of algorithms for searching for duplicated
functionality:

1. Näıve search. Basically an implementation of the analysis described in [10].
The predicates are not transformed to normal form, and search is performed
by computing all possible permutations of the clauses body atoms.

2. Identical search. Predicate definitions are transformed to normal form,
possibly resulting in different versions if multiple suitable argument permu-
tations exist. In a next step, each such version of a predicate is compared
with each version of the other predicates. Given that the predicates are in
normal form, the comparison is a simple check for identity. Consequently,
this algorithm is able to detect duplication between relations (such as app1

Towards a Normal Form for Mercury Programs 55

and conc1), but it has no means to detect similarity between relations (such
as reverse all and add and square.

3. Similar search. Predicate definitions are transformed to normal form as
in the identical search algorithm. However, in a next step the normal
forms are compared using a more involved algorithm that checks whether
the corresponding clauses of two predicate definitions in normal form are
identical modulo 1) variable renaming, and 2) a set of adjacent body atoms
(a so-called gap). The similar search algorithm is capable of detecting
duplication between relations (in what case there are no gaps) and certain
forms of similarity.

Table 1 provides timings for some basic examples. All times are in milliseconds,
and experiments were performed on a Pentium 4 running at 3.06GHz with 1GB
of memory. Three examples were tested:

1. The app1 and conc1 predicates from Example 1.
2. The rev all and add and square predicates from the introduction.
3. Two different implementations of the member predicates, one using an if-

then-else, the other using disjunction and negation.

The column labeled Normal form represents the time needed for the normal
form transformation, the other columns represent the times needed for executing
the mentioned algorithms (näıve, identical or similar search). Since only individ-
ual predicate definitions are compared, each algorithm was repeatedly executed
500 times in order to obtain a measurable timing.

Table 1. Execution time for identical and similar predicates detection

Program (500 executions)
Näıve
search

Normal
form

Identical
search

Similar
search

app1 and conc1 590 180 10 140

rev all and add and sqr 4250 340 80 420

member 809 170 10 140

In the case of the rev all, add and sqr and member examples, the execution
times given for the näıve and identical search algorithms represent the times
needed to conclude that the given examples do not implement duplicated rela-
tions, since these algorithms are unable to detect only similarities. The similar
search algorithm is able to detect that these predicates are identical modulo a
gap.

Table 1 shows that even for these small examples, the transformation to nor-
mal form followed by either the identical search or similar search algorithm
easily outperforms the analysis of [10]. This justifies the viability of our current
approach.

In what follows, we compare the performance of our algorithm for detecting
duplication with that of the näıve search algorithm when dealing with programs

56 F. Degrave and W. Vanhoof

containing several predicate definitions. Note that even if not much duplication
is present, all definitions must be pairwise compared in order to drop to conclu-
sions. Table 2 contains the execution times of all the algorithms on programs with
a different number of predicate definitions. All predicates have 1 or 2 clauses,
and each of these clauses has between 3 and 6 atoms. The given execution times
represent the total time needed for 100 repeated executions of each algorithm. In
this table, the column labeled Total represent the time needed for the normal-
ization followed by the identical search algorithm. The column labeled Speedup
represents the speedup of identical search (with normalization) with respect to
the näıve algorithm.

Table 2. Comparison of the algorithms for identical predicates detection

Program (100 executions)
Näıve
search

Normal
form

Identical
search

Total Speedup

2 predicates 890 95 10 105 8.5
5 predicates 3769 120 10 130 29.0
10 predicates 10,970 160 60 320 34.3
20 predicates 54,860 310 150 460 119.3
40 predicates 243,520 580 910 1,490 163.4

As shown in this table, the transformation of a program into its normal form
enables an important speedup when searching for identical predicates across a
program. Moreover, this speedup increases strongly when the size of the program
to explore increases, showing a reduction in complexity due to dealing with
programs in normal form.

Table 3 compares the performance of the identical search and similar search
algorithms when used on programs containing several predicate definitions. The
table shows that the similar search algorithm is substantially slower (about a
factor 10). This is as one would expect, given that this algorithm needs to con-
sider renamings and still needs to perform a number of permutations in order
to find the smallest gaps in two predicate definitions such that their code (these
gaps aside) is duplicated.

Table 3. Comparison of the algorithms for identical and similar predicates detection.

Program (100 executions) Identical
search

Similar
search

2 predicates 10 115

5 predicates 10 240

10 predicates 60 520

20 predicates 150 2090

40 predicates 910 9780

Towards a Normal Form for Mercury Programs 57

5 Discussion and Further Work

In this work we have defined a program transformation that normalizes a Mer-
cury program by reordering body goals and predicate arguments. The transfor-
mation, which preserves the well-modedness and determinism characteristics of
the program, aims at reducing the complexity of performing a search for dupli-
cated or similar code fragments between programs. The defined normal form is
unique (with respect to a suitable argument permutation). The transformation
is implemented and some basic algorithms for the detection of duplicated and
similar code have been implemented and evaluated. The evaluation is limited
and should be seen as a proof of concept showing that the use of a normal form
is viable rather than as a thorough evaluation of the search algorithms.

Topics of further work include the development of more involved algorithms for
the detection of similarities between predicate definitions, based on our normal
form. The similar search algorithm that was used to evaluation is a first step in
this direction. It is able to detect the similarity between the reverse all and
add and square predicates (showing they can be generalised into map) but a
more involved algorithm is needed if more interesting cases of similar code have
to be detected.

The normal form as we have defined it is meant to be an internal representa-
tion that is not shown to the programmer. If the normal form is to be used as a
basis for developing tools for program refactoring, it must be investigated if and
how the proposed transformation to normal form can be reversed, such that the
results of the analysis (indications of what code fragments are identical) can be
displayed on the original source code rather than the normalized code.

As a last topic for further research, we mention the normalization of type defi-
nitions. It needs to be investigated whether such normalization is possible, and in
what cases it might be interesting to detect similarities between type definitions,
and possibly generalise them into a single more general type definition.

Acknowledgments

We thank the LOPSTR participants and the anonymous referees for their con-
structive comments and feedback.

References

1. Chen, X., Francia, B., Li, M., McKinnon, B., Seker, A.: Shared information and
program plagiarism detection. IEEE Transactions on Information Theory 50(7),
1545–1551 (2004)

2. Horwitz, S.: Identifying the semantic and textual differences between two versions
of a program. ACM SIGPLAN Notices 25(6), 234–245 (1990)

3. Kontogiannis, K.A., Demori, R., Merlo, E., Galler, M., Bernstein, M.: Pattern
matching for clone and concept detection. In: Reverse engineering, pp. 77–108
(1996)

58 F. Degrave and W. Vanhoof

4. Mycroft, A., O’Keefe, R.A.: A polymorphic type system for Prolog. Artificial In-
telligence 23, 295–307 (1984)

5. Univ. of Melbourne. Mercury language reference manual (2006)
6. Overton, D., Somogyi, Z., Stuckey, P.: Constraint-based mode analysis of Mercury.

In: Proceedings of the 4th ACM SIGPLAN international conference on Principles
and practice of declarative programming, New York, USA, 2002, pp. 109–120. ACM
Press, New York (2002)

7. Overton, D., Somogyi, Z., Stuckey, P.J.: Constraint-based mode analysis of Mer-
cury. In: Kirchner, C. (ed.) Proceedings of the Fourth International Conference
on Principles and Practice of Declarative Programming, pp. 109–120. ACM Press,
New York (2002)

8. Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: Local algorithms for doc-
ument fingerprinting. In: Proceedings of the 2003 ACM SIGMOD international
conference on Management of Data, San Diego, CA (2003)

9. Somogyi, Z., Henderson, H., Conway, T.: The execution algorithm of Mercury, an
efficient purely declarative logic programming language. Journal of Logic Program-
ming 29(1) (1996)

10. Vanhoof, W.: Searching Semantically Equivalent Code Fragments in Logic Pro-
grams. In: Etalle, S. (ed.) LOPSTR 2004. LNCS, vol. 3573, pp. 1–18. Springer,
Heidelberg (2005)

11. Winstead, J., Evans, D.: Towards differential program analysis. In: Proceedings of
the 2003 Workshop on Dynamic Analysis (2003)

12. Wise. YAP3: Improved detection of similarities in computer program and other
texts. SIGCSEB: SIGCSE Bulletin (ACM Special Interest Group on Computer
Science Education), 28 (1996)

13. Yang, W.: Identifying syntactic differences between two programs. Software Prac-
tice and Experience 21(7), 739–755 (1991)

14. W. Yang, S. Horwitz, T. Reps. Detecting program components with equivalent
behaviors. Technical Report CS-TR-1989-840, University of Wisconsin, Madison
(1989)

Aggregates for CHR through

Program Transformation

Peter Van Weert�, Jon Sneyers��, and Bart Demoen

Department of Computer Science, K.U.Leuven, Belgium
FirstName.LastName@cs.kuleuven.be

Abstract. We propose an extension of Constraint HandlingRules (CHR)
with aggregates such as sum, count, findall, and min. This new feature
significantly improves the conciseness and expressiveness of the language.
In this paper, we describe an implementation based on source-to-source
transformations to CHR (extended with some low-level compiler direc-
tives). We allow user-defined aggregates and nested aggregate expressions
over arbitrary guarded conjunctions of constraints. Both an on-demand
and an incremental aggregate computation strategy are supported.

1 Introduction

Constraint Handling Rules (CHR) [1,4] is a powerful, elegant committed-choice
CLP language, based on multi-headed, guarded multiset rewrite rules. Originally
designed for the implementation of constraint solvers, CHR has matured towards
a general purpose language, used in a wide range of application domains, includ-
ing natural language processing, multi-agent systems, and type system design.

In [8,9] we proposed an extension of CHR with aggregates. This declarative
language feature allows the aggregation of information from an unbounded num-
ber of constraints to be captured concisely in a single expression in the head of
a CHR rule. Example aggregates are sum, count, findall, and min. Without
language support for aggregates, these common programming idioms require
cumbersome, low-level auxiliary constructs, cross-cutting the entire program.
Case studies show aggregates reduce program size by up to 50%. The resulting
programs are also significantly more understandable, maintainable, and robust.

This paper presents how existing CHR systems can be extended with a gen-
eral, extensible aggregate framework using source-to-source transformations to
lower-level CHR. Only a small number of easily implemented low-level compiler
directives have to be added to the CHR system itself. The transformation takes
care of introducing auxiliary and cross-cutting code, not unlike an aspect weaver
in Aspect-Oriented Programming [5].

The source-to-source transformation schemes presented in this paper support
user-defined, application-tailored aggregates, nested aggregate expressions, and
� Research Assistant of the Research Foundation – Flanders (FWO-Vlaanderen).

�� Research funded by a Ph.D. grant of the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen).

King, A. (Ed.): LOPSTR 2007, LNCS 4915, pp. 59–73, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

60 P. Van Weert, J. Sneyers, and B. Demoen

efficient aggregate computation using either on-demand or incremental aggregate
computation. The design of these non-trivial transformation schemes is discussed
in detail, the different issues identified and addressed one by one.

Overview. Section 2 briefly recalls the syntax and operational semantics of
CHR. More information can be found in [3,4]. Section 3 motivates and intro-
duces the extension of CHR with aggregates. Next, two different source-to-source
schemes are presented in Section 4. The implementation approach is evaluated in
Section 5. Finally, Section 6 provides conclusions and directions of future work.

2 Preliminaries: Constraint Handling Rules

2.1 Syntax of CHR

A constraint c(x1, . . . , xn) is an atom of predicate c/n, with all xi values of a host
language data type. Two types of constraints exist: built-in constraints, solved
by an underlying solver, and CHR constraints, solved by the CHR program.

A CHR program consists of a sequence of CHR rules of the form:

name @ Hk \ Hr ⇐⇒ G | B

The name is optional and unique; rules without a name get one implicitly.
The head consists of two conjunctions of CHR constraints, Hk and Hr. Their
conjuncts are called occurrences (kept and removed occurrences resp.). The guard
G is a conjunction of built-in constraints. If “G | ” is omitted, it is considered
to be “true | ”. The body B is a conjunction of CHR and built-in constraints.

There are three types of rules. If Hk is empty, the rule is a simplification rule.
If Hr is empty, the rule is a propagation rule and the symbol “ =⇒ ” is used
instead of “ ⇐⇒ ”. If both parts are non-empty, the rule is a simpagation rule.
At least one of Hr and Hk must be non-empty.

Logically, a simplification rule corresponds to an equivalence: G → (Hr ↔ B),
while a propagation rule corresponds to an implication: G → (Hk → B).

2.2 Operaional Semantics of CHR

Informally, the operational semantics of a CHR rule is as follows: if for each
occurrence in the head a matching constraint is found in the constraint store,
and the guard is satisfied, then the rule fires : the constraints that matched the
removed occurrences (Hr) are deleted from the store and the body is executed.

Formally, the execution of a CHR program follows the theoretical or high-level
operational semantics, denoted as ωt. For brevity, we do not present the formal
transition rules of ωt here; we refer to [3,4] instead. A version of ωt extended
with aggregates is presented in Section 3.3.

The theoretical operational semantics is highly nondeterministic. Only pro-
grams that do not depend on the order of rule application have guaranteed
behavior under ωt. Such programs are called confluent (cf. [4]). However, writ-
ing confluent programs is often overly difficult. Many programs are non-confluent

Aggregates for CHR through Program Transformation 61

under ωt as CHR programmers exploit the execution strategy implemented by
most CHR systems to obtain the desired behavior. The refined operational se-
mantics, denoted with ωr, instantiates ωt to capture the behavior of most current
systems. A complete exposition, including a formal description, is found in [3].

A central concept in the refined semantics is the active constraint. Each time
a constraint becomes active, all CHR rules are tried in a top-down textual order,
until all applicable rules that match the active constraint have been executed,
or the active constraint is removed. If a rule fires, the constraints in its body are
processed one at a time, in a left-to-right textual order. If a CHR constraint is
processed, it is added to the constraint store and immediately becomes the new
active constraint. Processing a built-in constraint entails solving it, and reacti-
vating all CHR constraints whose arguments are affected, one at a time. The
order in which CHR constraints are reactivated is undetermined. The activation
and reactivation of a CHR constraint is treated as a procedure call : only when
its execution is finished, the execution returns to the previous active constraint.

3 Extending CHR with Aggregates

As CHR is already Turing complete [7], aggregates do not add to the computa-
tional power of CHR. Section 3.1 shows they are nevertheless invaluable when it
comes to expressiveness, maintainability and conciseness. The extension of CHR
with aggregates is introduced in Section 3.2, and given a formal operational se-
mantics in Section 3.3. A more thorough introduction to the proposed extension,
more examples and case studies can be found in [8,9].

3.1 Motivation and Running Example

As the head of each CHR rule only considers a fixed number of constraints, any
form of aggregation over unbounded parts of the constraint store necessarily
requires explicit encoding, using auxiliary constraints and rules. The following
example clearly shows the inadequacy of such ad hoc approaches. It is also used
as a running example throughout the paper.

Example 1. Suppose the constraints account(AccountId,ClientId,Balance)
and client(ClientId) constitute a simplified representation of the accounts
and clients of a bank. At some point, the bank decides to add the business rule:

“A client whose accumulated sum of account balances is $25,000 or more
is a platinum client”

As a client can have any number of accounts, this seemingly simple rule cannot
be expressed straightforwardly in CHR. CHR practitioners therefore commonly
introduce a constraint such as accumulated balance/2. This allows the logic of
platinum clients to be captured concisely in a single rule as follows:

client(C), accumulated_balance(C,Sum) ==> Sum ≥ 25000 | platinum(C).

62 P. Van Weert, J. Sneyers, and B. Demoen

This approach, however, also necessitates the explicit maintenance of the accu-
mulated balance. This inherently cross-cutting concern requires invasive modi-
fications to all rules that alter the balance of an account. The bank e.g. has to
add at least the following underlined code:

deposit(A,X), account(A,C,B), accumulated_balance(C,Acc) <=>
account(A,C,B+X), accumulated_balance(C,Acc+X).

...
withdraw(A,X), account(A,C,B), accumulated_balance(C,Acc) <=>

B > X, account(A,C,B-X), accumulated_balance(C,Acc-X).

Many variations to the above maintenance scheme can be concocted, but they
all require similar modifications scattered throughout the entire program. Sim-
ilar auxiliary code has to be written for every aggregate; a very tedious and
repetitive task. Clearly, this approach displays poor compliance with common
software quality criteria: it is highly error-prone, and it impairs the readability
and maintainability of the program, as the logic of many rules becomes tangled
with obfuscating auxiliary code. In other words, many practical advantages of
declarative programming – understandability, maintainability, robustness, and
shortened development time – are severely handicapped.

3.2 An Extensible Framework for Aggregates in CHR

This section introduces an extension of CHR with aggregates, designed to over-
come the expressivity problems outlined in the previous section. It allows rule
heads to contain aggregates. These expressions accumulate information over pos-
sibly unbounded parts of the constraint store. Aggregates can be written in both
the kept and the removed part of the head; there is no semantical difference.

This section provides a short summary on the proposed, extensible aggregate
framework. More information can be found in [8,9].

Predefined aggregates. Our framework provides a wide range of predefined
aggregates, including all aggregates commonly found in related paradigms such
as database query languages [10] (i.e. min, max, sum, count and avg) and produc-
tion rule systems (i.e. not, exists and forall). A complete list of predefined
aggregates, together with a number of example uses, can be found in [8,9].

Example 2. Using the sum aggregate (in italics), the platinum client business
rule of Example 1 is again declaratively expressed in a single rule:

client(C), sum(B,account(_,C,B),Sum) ==> Sum ≥ 25000 | platinum(C).

However, no further changes to the program are required, as the aggregate’s
semantics already guarantees the correct behavior implicitly: it accumulates the
sum of the balances B of all matching account/3 constraints, and ensures that
the rule fires as soon as this sum, Sum, reaches 25,000.

Contrasting the above example with the approach outlined in Example 1 in the
previous section clearly shows that aggregates render CHR programs more declar-
ative, readable and maintainable. Relieved from the cumbersome and repetitive

Aggregates for CHR through Program Transformation 63

task of implementing aggregates, the programmer can focus exclusively on the
application domain. So, productivity is improved considerably as well.

User-defined aggregates. Often information has to be aggregated in
application-specific ways. Therefore, we designed a general high-level mechanism
that enables CHR end-users to create user-defined aggregates :

aggregate(Start, Inc, Dec, Final, Template, Goal, Result)

The aggregate/7 construct is expressive enough to effectively specify any ag-
gregate. In fact, all predefined aggregates are also implemented by it.

Example 3. The predefined sum(T,G,R) aggregate for instance is specified as
aggregate(=(0),plus,minus,=,T,G,R), where ‘=(0)’ indicates unification
with zero, and plus/3 and minus/3 are two straightforward Prolog predicates
computing the sum, respectively the difference of the first two arguments.

The first four arguments of aggregate/7 specify the host language procedures
or CHR constraints that determine how the aggregate is computed. First, an
intermediate working value is initialized using Start. Then, for each matching
found for Goal, a corresponding instance of Template is passed to Inc to in-
crement the current working value. After all increments required are made, the
working value is finalized using Final, to obtain the aggregate’s result Result.
The function of Dec is explained in Section 4.3.

These seven arguments thus completely determine an aggregate’s semantics,
as also reflected in the formal operational semantics presented in the next section.

Complex aggregate goals. Example 2 showed an aggregate over a simple
Goal, i.e., consisting of a single CHR constraint. The aggregate goal Goal how-
ever can be an arbitrary conjunction of CHR constraints and guards: for ex-
ample count((platinum(C),account(_,C,_)), N) counts the number of ac-
counts owned by platinum clients. We further allow nested aggregates, that
is, aggregate expressions inside the goal of another aggregate: for instance,
max(S, (client(C), sum(B,account(_,C,B),S)), M) returns the largest to-
tal balance M of any individual client.

3.3 Formal Operational Semantics

We extend the theoretical operational semantics ωt [3,4] to deal with the general
aggregate/7 expressions introduced in the previous section (recall that this
also covers all predefined aggregates). The extended semantics is denoted ωa. We
extend ωt because of brevity, and because it allows more implementation freedom
then extending a more deterministic instance such as e.g. ωr (cf. Section 2.2).

The ωa semantics is formulated as a state transition system. Transition rules
define the relation between an execution state and its subsequent execution state.

Definition 1 (Identified constraints). To differentiate amongst otherwise
identical copies of constraints, CHR constraints are assigned unique identifiers.

64 P. Van Weert, J. Sneyers, and B. Demoen

An identified CHR constraint with constraint identifier i is denoted c#i. We
further introduce the functions chr(c#i) = c and id(c#i) = i, and extend them
to sequences and sets of identified CHR constraints in the obvious manner.

Definition 2 (Execution state). An execution state σ is a tuple 〈G, S, B, T〉n.
The goal G is a multiset of constraints. The CHR constraint store S is a set of
identified CHR constraints (while S is a set, chr (S) is a multiset). The built-
in constraint store B is the conjunction of all built-in constraints passed to the
underlying solver. The propagation history T, necessary to prevent trivial non-
termination, is a set of tuples, each recording the name of a rule and a sequence
of identities of the CHR constraints that fired that rule. Finally, the counter
n ∈ N represents the next unique constraint identifier.

The semantics of the built-in constraints is determined by a constraint the-
ory DB. Let vars(A) be the variables occurring freely in A, then ∃̄AF denotes
∃x1, . . . , ∃xnF , with {x1, . . . , xn} = vars(F)\vars(A).

Because aggregates can be nested, we use two mutually recursive definitions:

Definition 3 (Matching substitutions). Let matchings(A ∧ H ∧ G, Sh, S, B)

=
{

θ
∣

∣ H = θ(Sh) ∧ DB |= B → ∃̄B(θ ∧ G ∧ agg cond(A, Sh ∪ S, B))
}

where H and Sh are conjunctions of CHR constraints, G and B conjunctions of
built-in constraints, A is a conjunction of aggregates, and S is a set of identified
CHR constraints (a CHR store).

Definition 4 (Aggregate Condition). For an aggregate A of the form
aggregate(s, i, d, f, T, G, R), a CHR store S and a built-in store B:

agg cond(A, S, B) = s(V0) ∧
n
∧

k=1

i(Vk−1, θk(T), Vk) ∧ f(Vn, R)

where V0, . . . , Vn are new variables and {θ1, . . . , θn} =
⋃

H⊆S
matchings′(G, H,

S, B). The condition is extended to conjunctions of aggregates in the obvious
manner.

In its generic syntactic form (cf. Section 2.1), the head of a rule is prepended
with a conjunction of aggregates A (recall that an aggregate’s location in the
head has no semantic meaning):

Definition 5 (Transition rules). Given a CHR program P, execution proceeds
by exhaustively applying the following transition rules, starting from an initial
state of the form 〈G, ∅, true, ∅〉1:

1. Solve. 〈{c}
 G, S, B, T〉n �P 〈G, S, c ∧ B, T〉n
where c is a built-in constraint and DB |= ∃̄∅B.

2. Introduce. 〈{c}
 G, S,B, T〉n �P 〈G, {c#n} ∪ S, B, T〉n+1

where c is a CHR constraint and DB |= ∃̄∅B.

Aggregates for CHR through Program Transformation 65

3. Apply. 〈G, H1 ∪ H2 ∪ S,B, T〉n �P 〈B
 G, H1 ∪ S, θ ∧ B, T ∪ {h}〉n
where DB |= ∃̄∅B and P contains a rule r @ A, H ′

1\H ′
2 ⇐⇒ G | B and

θ ∈ matchings((A,H ′
1, H

′
2, G), H1∪H2, S, B) and h = (r, id(H1, H2)) �∈ T

The propagation history does not record an aggregate in any way, so a rule is
never fired more then once with the same combination of constraints, even if the
aggregate’s value changes. We call this fire-once semantics. More information
regarding this choice can be found in [9].

4 Implementation through Program Transformation

The transformation schemes presented here improve earlier schemes described
in [9]. Two different aggregate computation strategies are supported: on-demand
(Section 4.2), and incremental (Section 4.3). The source-to-source transforma-
tions are implemented in the K.U.Leuven CHR system [6] in SWI-Prolog [12],
but the approach is equally applicable to other systems implementing the re-
fined operational semantics. The implementation is based on high-level meta
CHR rules. Their basic syntax and semantics is outlined first in Section 4.1.

4.1 Meta CHR Rules

Meta CHR rules allow concise specification of CHR source-to-source transfor-
mations. They somewhat resemble ordinary CHR rules, both syntactically and
semantically. Only, instead of rewriting constraint multisets, they rewrite the
CHR rules of another CHR program, called the object program.

A meta rule is applicable if its head can be matched with occurrences in a sin-
gle object rule. When a meta rule fires, the occurrences that matched its removed
meta occurrences, are removed from the object rule. In a meta rule’s body, the
‘+’ prefix operator adds kept occurrences to the object rule, ‘-’ adds removed
occurrences, and ‘?’ adds extra conjuncts to the object rule’s guard. Writing a
CHR rule in the body of a meta rule adds this rule to the object program. The
remaining head/1 operation returns those occurrences of the object rule not
matched by the meta rule, and guard/1 returns the object rule’s guard.

4.2 On-Demand Aggregate Computation

This section gradually introduces and explains a transformation scheme for on-
demand aggregate computation. The scheme, depicted in Figure 1, outputs code
in which aggregates are computed from scratch each time they are required.

Lines 1 to 4. The simplification rule removes each occurrence of aggregate/7,
and replaces it with a guard (line 4). This guard calls an auxiliary CHR con-
straint1, aggi/2, that computes the aggregate’s result A. The shared vars/3

1 Even though not actually allowed by the CHR language (cf. Section 2), several CHR
implementations do support CHR constraints in guards this way, a feature often
exploited by expert users. To properly support such guards though, a number of
changes were required to the K.U.Leuven CHR compiler ([9] provides an overview).

66 P. Van Weert, J. Sneyers, and B. Demoen

1 aggregate(Start,Inc,_,Final,T,G,A) <=>

2 new_unique_identifier(i),

3 remaining_head(Head), shared_vars(Head, (T-G), V),

4 ?aggi(V,A),

5 +G#on_active, +G#on_removal,

6 (aggi(V,A) <=> Start(I), resulti(I), matchi(V), geti(R), Final(R,A)),

7 (matchi(V), G ==> incri(T)),

8 (incri(T), resulti(R1) <=> Inc(R1, T, R2), resulti(R2)),

9 (resulti(R), matchi(_), geti(Q) <=> Q = R).

Fig. 1. The core of a transformation scheme using on-demand aggregate computation.
For compactness, pseudo code is used. The function of each line is explained below.

predicate returns the variables shared by its first two arguments. It is used to
compute V, the list of all variables required to compute the aggregate (line 3–4).
The implementation of the aggregate computation (lines 6–9) is discussed below.
The identifier i (line 2) ensures all auxiliary functors, such as aggi/2, are unique.

Line 5 (on active and on removal heads). Under the refined operational
semantics, by default, the guard added on line 4 is called each time a match-
ing is found for the remaining occurrences. In general, this does not suffice:
the aggregate also has to be (re)computed when its outcome changes. To indi-
cate such extra conditions under which a rule, and thus its guard, have to be
(re)considered, we introduced two special types of heads: on active heads and
on removal heads. An on active head indicates an additional trigger to fire the
rule: when constraints matching the on active head are activated (i.e. newly
added or reactivated, cf. Section 2.2), the rule is tried. Similarly, an on removal
head indicates that the rule additionally has to be tried when constraints match-
ing the on removal head are removed from the constraint store. Neither of these
types of heads is considered when an occurrence in the regular head is active.
Both new types of heads are implemented with a straightforward source-to-
source transformation. More information can be found in [9].

Line 5 adds the aggregate’s goal G to the original object rule, both as an
on active and as a on removal head. This ensures the guard computing the
aggregate is called, not only when the remainder of the original head is matched,
but also when constraints matching G are added, reactivated, or removed.

Example 4. The rule from Example 2 (Section 3.2) becomes:

account(_,C,_)#on_active, account(_,C,_)#on_removal,
client(C) ==> agg0(C,Sum), Sum ≥ 25000 | platinum(C).

A client’s accumulated balance is thus also (re)computed when the accumulated
balance changes, i.e. each time an account/3 constraint is added or removed.

Issue 1: Updates. Recall the following rule from Example 1 (Section 3.1):

deposit(A,X), account(A,C,B) <=> account(A,C,B+X).

Aggregates for CHR through Program Transformation 67

The above rule is an instance of a common CHR programming pattern, called
an update: a constraint is removed and immediately replaced with a similar,
updated version. In the context of aggregates however, the removal of the former
may cause aggregates to be recomputed prior to the insertion of the updated
version2. This behavior is not always desired. For instance, in the intermediate
state right after the above rule removes ‘account(A,C,B)’, the accumulated
balance in Example 4 would clearly be incorrect.

As a solution, we introduce pragma passive removal. If a constraint anno-
tated with passive removal is removed, no on removal heads are activated:

deposit(A,X), account(A,C,B) # passive_removal <=> account(A,C,B+X).

Consequently, the aggregate is only recomputed when the new, updated account
is added. This allows the CHR programmer to easily specify the desired behavior.

Lines 6–9. The rules performing the actual aggregate computation are added
to the object program by lines 6 to 9. Line 6 implements the aggi/2 operation.
First, the intermediate aggregate result is initialized using the aggregate’s Start
operation. This intermediate result is stored as a resulti/1 constraint. Then the
matchi/1 constraint is called, causing the intermediate result to be incremented
for each matching aggregate goal G (lines 7–8). To perform the matching with
the aggregate goal G (line 7), the variables V it shares with the remaining head
of the original object rule are needed (line 3).

Example 5. For the sum/3 aggregate in Example 2 the following code is generated
(recall from Example 3 that sum(T,G,A) ≡ aggregate(=(0),plus,minus,=,T,G,A)):

agg0(C,Sum) <=> 0=I, result0(I), match0(C), get0(R), R=A.
match0(C), account(_,C,B) ==> incr0(B).
incr0(B), result0(R1) <=> plus(R1, B, R2), result0(R2).
result0(R), match0(_), get0(Q) <=> Q = R.

If the sum aggregate (the accumulated balance) has to be computed, the result is
initialized to zero, stored as a constraint, and then incremented with the balance
B of each matching account/3 constraint. To perform this match, the variable
C (the client’s identifier) is indeed required.

The intermediate result resulti/1 is incremented through the auxiliary con-
straint incri/1 (line 8). This way, the propagation history of the rule on line 7
ensures that each matching goal G contributes only once. The argument passed
to incri/1 (line 7), and subsequently to Inc (line 8), is the aggregate’s template
T. The refined operational semantics (cf. Section 2.2) ensures that the call to
matchi/1 only returns to the rule body on line 6 after all matchings and incre-
ments are performed. A last auxiliary constraint, geti/1, is then used to retrieve
and remove the computed result (line 8). Finally, this result is finalized using
Final to obtain the aggregate result A (line 6).
2 Similar issues were outlined in [11] in the context of negation as absence.

68 P. Van Weert, J. Sneyers, and B. Demoen

4.3 Incremental Aggregate Computation

The performance of on-demand aggregate computation, described in the previous
section, is not always adequate. Aggregates ranging over large portions of the
constraint store may be recomputed from scratch many times. In such cases, it
is obviously more efficient to maintain the aggregate value incrementally.

1 aggregate(Start,Inc,Dec,Final,T,G,A) <=>

2 new_unique_identifier(i),

3 guard(Guard), remaining_head(Head), shared_vars(Head, (T-G), V),

4 +matchi(V,I), +resulti(I,R), ?Final(R,A),

5 (Head ==> Guard | initi(V)),

6 (matchi(V,_) \ initi(V) <=> true),

7 (initi(V) <=> Start(R), matchi(V,I), resulti(I,R)),

8 (matchi(V,I), G ==> incri(I,T)),

9 (incri(I,T), resulti(I,R1) <=> Inc(R1, T, R2), resulti(I,R2)),

10 (matchi(V,I)#passive, G#on_removal ==> decri(I,T) pragma no_history),

11 (decri(I,T), resulti(I,R1) <=> Dec(R1, T, R2), resulti(I,R2)).

Fig. 2. Transformation scheme for maintained aggregates (a basic, first attempt)

The meta rule in Figure 2 illustrates a basic transformation scheme for incre-
mentally maintained aggregates. The scheme is not yet fully correct with respect
to the ωa operational semantics (cf. Section 3.3) though. Subsequent subsections
will refine it to deal with certain semantical issues, and more complex aggregates
such as nested and non-ground aggregates.

Basic scheme. Similar to the transformation scheme of Section 4.2, aggregate
results are stored in resulti/2 constraints, and matchi/2 constraints are used
to find matches with the aggregate’s goal G (lines 8 and 10). The need for the
extra argument, an aggregate identifier, is explained below.

Line 4. The aggregate is no longer replaced by a guard that computes the ag-
gregate result, but instead with a matchi/2 and a resulti/2 occurrence in the
object rule’s head. Both new occurrences are kept because the computed aggre-
gate result may be needed more than once. Line 4 also adds a guard to finalizes
the aggregate result.

Incremental maintenance (lines 8–11). The resulti/2 and matchi/2 constraints
remain in the store, and the rules added by lines 8–11 ensure these results remain
consistent. Maintained results are incremented each time a new matching is
found for G (lines 8–9), and decremented each time such a matching is removed
(lines 10–11). For the latter, the Dec argument of aggregate/7 is used. This
argument indicates the inverse operation of Inc.

Line 10. The different pragmas and annotations in the rule on line 10 warrant
extra clarification. The rule must not fire when a matchi/2 is active, only when
constraints matching G are removed. Therefore, the matchi/2 occurrence is made

Aggregates for CHR through Program Transformation 69

passive (pass is short for passive, a common CHR pragma). Reacting to con-
straint removals is done, as in Section 4.2, using an on removal head. Finally,
pragma no history is added, indicating no propagation history has to be kept
for this rule. Otherwise, the rule would only fire once per matchi/2 constraint,
as the on removal head is not included in propagation history tuples.

Aggregate identifiers. More than one result may have to be maintained at the
same time. To ensure the right result is updated after a match is found (lines 8
and 10), we let corresponding matchi/2 and resulti/2 constraints share a unique
identifier, and pass this to the incri/2 or decri/2 constraint. Other than that,
the pattern used to increment and decrement the maintained results is the same
as the pattern used in Section 4.2.

Initialization (lines 5–7). Eagerly maintaining all possible aggregate results
would be overly expensive. Aggregate maintenance is instead only started once
a matching is found for the remainder of the head, as realized by the rule added
on line 5. The head and guard of this rule are copied from the original object rule
(without copying the aggregatehead itself), and its body calls aniniti/2 auxiliary
constraint. This constraint is removed by the rule on line 6 if the same aggregate
result is already being maintained; in the other case, the rule on line 7 initializes a
new result, stores it as a resulti/2, and adds a matchingi/2 constraint.

Issue 1: Multiple Removals. The basic scheme does not fully implement the
ωa semantics defined in Section 3.3. This subsection addresses a first issue:

Example 6. Consider the following artificial example:

a, count(c, Cs) <=> Cs \== 2 | writeln(Cs).
b \ c, c <=> true.

where the “count(c, Cs)” aggregate counts the number of c/0 constraints.
Now consider the query “c, c, a, b”. First two c constraints are added, then a is
called. The latter causes the count/2 aggregate to be computed. As the result is
equal to two, the first rule does not fire. After adding b, the second rule fires and
removes both c constraints. Suppose the count is maintained incrementally. The
removal of the first c constraint causes the maintained result to be decremented.
The count becomes equal to one, causing the first rule to fire with Cs equal to
one, even though there are no c constraints left. This is clearly not correct. The
reason is that, whilst both c constraints are removed simultaneously, the updates
to the maintained aggregate are performed, and visible, one by one.

Our solution is based on splitting the activation of on removal heads into two
phases: on removal1 and on removal2. When a rule fires, the removed con-
straints are first matched against on removal1 heads. Only after this is done for
all removed constraints, the same is repeated for the on removal2 heads.

Lines 10–11 of Figure 2 are replaced with those in Figure 3. The rules added
on lines 10�–11� ensure that first, in the on removal1 phase, all affected aggre-
gates are made consistent. The updated results are not yet used immediately
as in Example 6. Instead, the resulti/2 constraint is added passively to the

70 P. Van Weert, J. Sneyers, and B. Demoen

...

10� (matchi(V,I)#passive, G#on_removal1 ==> decri(I,T) pragma no_history),

11� (decri(I,T), resulti(I,R1) <=> Dec(R1,T,R2), resulti(I,R2)#passive)

12� (matchi(V,I)#passive, G#on_removal2,

13� resulti(I,_)#Id ==> chr_reactivatei(Id) pragma no_history).

Fig. 3. Code to replace lines 10–11 of the transformation scheme of Figure 2 to correctly
deal with multiple constraint removals. Several new lower-level CHR constructs are
used. Their semantics is explained in the accompanying text.

constraint store, that is, without searching for matching occurrences. Hence the
‘#passive’ annotation in the body of the rule on line 11�. The results only
become active once all results are guaranteed consistent again, that is, in the
on removal2 phase (line 12�). Activating a constraint is done using the low-level
chr reactivate/1 primitive (line 13�).

Issue 2: Updates. The update pattern causes similar issues in the context of
incrementally computed aggregates as described before in Section 4.2, Issue 1.
The solution is analogous as well, only with a slightly refined semantics of pragma
passive removal: if a constraint annotated with passive removal is removed,
no on removal2 heads are activated, only on removal1 heads (cf. previous issue).
As such, the maintained result is passively decremented, but the aggregate only
becomes active when the new, updated account is added.

Issue 3: Nested Aggregates. A second semantical problem with the basic
transformation scheme occurs when applying it to nested aggregates. The main-
tained value of a nested aggregate is incremented and decremented using the
update pattern. The outer aggregate consequently observes the intermediate
state in which the result/2 constraint holding the old maintained value of the
nested aggregate is removed and the new, updated version is not yet added. The
solution consists of slightly adjusting lines 9 and 11 in Figure 2, and line 11� in
Figure 3, to use pragma passive removal for updates to result/2 constraints.

Issue 4: Propagation Histories. The transformation scheme adds two ex-
tra heads per aggregate. However, according to the ωa semantics these are not
allowed to be part of the propagation history. Pragma history/2, introduced
in [9], can be used to explicitly specify which occurrence identifiers have to be
included in the history tuples. Thus the issue is solved by adding the following
code after line 3 of Figure 2 (histi is a unique identifier):

..., identifiers(Head, Ids), pragma(history(histi, Ids)), ...

Issue 5: Non-ground Aggregates. Two final issues occur when aggregating
over goals containing non-ground variables:

– A single built-in constraint (e.g. unification) may cause multiple goals to
match. The problem is analogous to Issue 1 on multiple removals. It has to

Aggregates for CHR through Program Transformation 71

0.5

1

2

4

128 256 512 1k 2k 4k 8k 16k 32k

R
u
n
ti

m
e/

in
p
u
t

si
ze

in
m

s
(l

o
g
sc

a
le

)

Input size (logscale)

HOPCROFT-agg

DIJKSTRA-agg

EULER-agg

HOPCROFT-orig

DIJKSTRA-orig

EULER-orig

Fig. 4. Runtimes for three programs, with and without aggregates

be ensured that first all aggregates are updated, i.e. incremented in this case,
before the aggregate results are activated.

– A unification can cause two or more match/2 constraints to coincide. To
preserve correctness, we would have to add the following rule to Figure 2:

..., (matchi(V,_) \ matchi(V,I), result(I,_) <=> true), ...

Unfortunately, the refined operational semantics (which is used to execute the
result of the transformation), does not determine the order in which constraints
are reactivated (cf. Section 2.2). This implies their is no clear-cut way to ensure
all aggregates are made consistent, or duplicate maintained results are removed,
before other CHR constraints are reactivated and use the incorrect aggregate
values. This lack of control is a general problem of current CHR systems, that
warrants further research outside the scope of this paper (see also [2] and Sec-
tion 5). Fortunately, most aggregates range over ground data. For aggregates
ranging over non-ground data, only the on-demand transformation is correct.

5 Discussion and Evaluation

Performance Evaluation. In [8,9] we revised a number of existing CHR pro-
grams to use aggregates. Because our transformation schemes have to deal with
all possible use patterns of aggregates, and the original programs are manu-
ally specialized, we expect the programs using aggregates to be slower than the
original programs. Our prototype implementation however shows the runtime
complexity can be maintained, with an acceptable constant overhead. Figure 4
plots benchmark results for the different versions of the DIJKSTRA, EULER,
and HOPCROFT programs (cf. [8,9]). The DIJKSTRA-agg program is about

72 P. Van Weert, J. Sneyers, and B. Demoen

three times slower than the manually specialized DIJKSTRA-orig. For EULER
and HOPCROFT, the version with aggregates is only about 1.5 times slower.

The DIJKSTRA-agg program uses an incrementally maintained min aggre-
gate. The implementation of this aggregate relies on an efficient priority queue
implementation. This illustrates another advantage of language support for ag-
gregates: the data structures required for efficient aggregate computation only
have to be implemented once; end users no longer have to worry about this.

For the above figures, a transformation scheme presented in [9] is used for
the incrementally maintained aggregates. This scheme is an extended version
of the scheme of Section 4.3, in which aggregates are still replaced by guards.
The incremental scheme of Section 4.3 considerably improves the latter scheme:
it permits efficient indexing on aggregate results, and failing guards no longer
backtrack over result maintenance. For the above benchmarks though, we expect
no significant difference in performance.

Discussion. Section 4 indicated several issues that occur when transforming to
CHR code. A common thread is the lack of control offered by the refined opera-
tional semantics, a problem also perceived outside the context of aggregates (cf.
[2]). Whilst the low-level constructs we introduced in this paper are acceptable
for generated code or expert use, more high-level, declarative control structures
are required for the CHR programmer. A first step are the user-definable rule
priorities introduced by [2].

Related Work. Constructs related to aggregates are found in many languages.
For SQL [10], which unlike CHR [7] is not Turing-complete, aggregates do add
computational power. The original SQL standard only supports five aggregates:
min, max, count, sum, and avg. Many recent database systems also include the
possibility to extend the database query language with user-defined aggregates.

Recently, several production rule systems introduced a general accumulate
construct, similar to our aggregate/7. As far as we know, current versions lack
support for nested aggregates, complex goals, and incremental maintenance.

In logic programming, the best-known practical implementation of aggregates
are the all solutions predicates findall/3, bagof/3 and setof/3. Other aggre-
gates can be implemented in terms of these all solutions predicates.

In [11] we introduced CHR¬, an extension of CHR with negation as absence.
CHR with aggregates is a far more expressive generalization of CHR¬as negation
as absence can easily be expressed using the count/2 aggregate.

6 Conclusion and Future Work

In this paper we presented an implementation approach for aggregates, a new
declarative language feature for CHR that considerably increases its expressive-
ness. The approach is based on source-to-source transformation to regular CHR
(extended with some low-level constructs). As a side-effect of our work, we cre-
ated a practical, high-level source-to-source framework based on meta CHR rules.
We outlined the design of non-trivial transformation schemes for on-demand and

Aggregates for CHR through Program Transformation 73

incremental aggregate computation, and clearly showed the effectiveness of CHR-
to-CHR transformations. The source-to-source implementation approach allows
for flexible and rapid implementations, easily portable to existing CHR systems.
The current generation of optimizing CHR compilers ensure the desired runtime
complexity is achieved, with an acceptable constant overhead. We clearly iden-
tified the issues that occur when transforming to CHR, and showed how they
can be addressed using newly introduced low-level constructs. Several of these
constructs have already proven useful outside the context of aggregates (e.g. [2]).

In future work, various ways can be investigated to improve the efficiency of
our aggregates implementation. In particular, both specializations on the source
level and dedicated support in the CHR compiler can be considered. Even though
source-to-source transformation remains effective for aggregates in their full gen-
erality, specific cases can e.g. be distinguised where incremental maintenance of
aggregates can be embedded directly in the constraint store insertion and re-
moval operations. Also, static and dynamic analyses can be developed to auto-
matically select the aggregate computation strategy (on-demand, incremental,
or maybe hybrid strategies).

References

1. The CHR Home Page. http://www.cs.kuleuven.be/∼dtai/projects/CHR/.
2. De Koninck, L., Schrijvers, T., Demoen, B.: User-definable rule priorities for CHR.

In: 9th International ACM SIGPLAN Symposium on Principles and Practice of
Declarative Programming, Wroc�law, Poland, July 2007, pp. 25–36 (2007)

3. Duck, G.J., Stuckey, P.J., de la Banda, M.G., Holzbaur, C.: The Refined Opera-
tional Semantics of Constraint Handling Rules. In: Demoen, B., Lifschitz, V. (eds.)
ICLP 2004. LNCS, vol. 3132, pp. 90–104. Springer, Heidelberg (2004)

4. Frühwirth, T.: Theory and practice of Constraint Handling Rules. Journal of Logic
Programming 37(1–3), 95–138 (1998)

5. Kiczales, G., Lamping, J., Mendhekar, A., Meda, C., Lopes, C., Loingtier, J.-M., Ir-
wing, J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

6. Schrijvers, T., Demoen, B.: The K.U.Leuven CHR system: Implementation and
application. In: Selected Contributions, First Workshop on Constraint Handling
Rules, (May 2004), http://www.cs.kuleuven.be/∼toms/CHR/

7. Sneyers, J., Schrijvers, T., Demoen, B.: The computational power and complexity
of Constraint Handling Rules. In: Second Workshop on Constraint Handling Rules,
October 2005, pp. 3–17. Sitges, Spain (2005)

8. Sneyers, J., Van Weert, P., Schrijvers, T., Demoen, B.: Aggregates in CHR. In:
Fourth Workshop on Constraint Handling Rules (2007) (to appear)

9. Sneyers, J., Van Weert, P., Schrijvers, T., Demoen, B.: Aggregates in CHR. Tech-
nical Report CW481, Dept. Computer Science, K.U.Leuven (2007)

10. ISO/IEC 9075:2003: Information technology – Database languages – SQL
11. Van Weert, P., Sneyers, J., Schrijvers, T., Demoen, B.: Extending CHR with nega-

tion as absence. In: Third Workshop on Constraint Handling Rules, Venice, Italy,
pp. 125–139 (2006)

12. Wielemaker, J.: An overview of the SWI-Prolog programming environment. In:
13th Intl. Workshop on Logic Programming Environments, pp. 1–16. Heverlee,
Belgium (2003), http://www.swi-prolog.org

http://www.cs.kuleuven.be/~dtai/projects/CHR/
http://www.cs.kuleuven.be/~toms/CHR/
http://www.swi-prolog.org

Preserving Sharing in the Partial Evaluation of

Lazy Functional Programs�

Sebastian Fischer1, Josep Silva2, Salvador Tamarit2, and Germán Vidal2

1 University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
sebf@informatik.uni-kiel.de

2 Technical University of Valencia, Camino de Vera S/N, E-46022 Valencia, Spain
{jsilva,stamarit,gvidal}@dsic.upv.es

Abstract. The goal of partial evaluation is the specialization of pro-
grams w.r.t. part of their input data. Although this technique is already
well-known in the context of functional languages, current approaches
are either overly restrictive or destroy sharing through the specializa-
tion process, which is unacceptable from a performance point of view.
In this work, we present the basis of a new partial evaluation scheme for
first-order lazy functional programs that preserves sharing through the
specialization process and still allows the unfolding of arbitrary function
calls.

1 Introduction

Partial evaluation [12] is an automatic technique for the specialization of pro-
grams. Currently, one can find partial evaluation techniques for a variety of
programming languages, like C [5], Curry [17], Prolog [14], Scheme [8], etc.

In this work, we focus on solving a problem associated with the partial eval-
uation of lazy functional languages. In these languages (e.g., Haskell [15]), it is
essential to share program variables in order to avoid losing efficiency due to the
repeated evaluation of the same expression. Consider, e.g., the following program
excerpt (we use [] and “:” as constructors of lists):

sumList([]) = 0 incList(n, []) = []
sumList(x : xs)= x+sumList(xs) incList(n, x : xs)= (x+n) : incList(n, xs)

where function sumList sums the elements of a list and incList increments the
elements of a list by a given number. Let us now consider different alternatives
for the partial evaluation of the following expression:

sumList(incList(e , [a, b]))

where e is a closed expression (i.e., without free variables) whose evaluation is
expensive, a, b are natural numbers, and [a, b] is a shorthand for a : b : [].
� This work has been partially supported by the EU (FEDER) and the Spanish MEC

under grants TIN2005-09207-C03-02 and Acción Integrada HA2006-0008.

King, A. (Ed.): LOPSTR 2007, LNCS 4915, pp. 74–89, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Preserving Sharing in Partial Evaluation 75

First Try: Downgrading Program Efficiency. A naive partial evaluator may
reduce the previous expression as follows:

sumList(incList(e , [a, b]))
⇒ sumList(a+ e) : incList(e , [b]))
⇒ sumList(a+ (e1 + 42)) : incList(e , [b]))

where we assume that e is unfolded to e1 + 42 in one reduction step. Now,
we would build the following residual rule—called resultant—associated to the
above partial computation:

new function = sumList(a+ (e1 + 42)) : incList(e , [b]))

Then, if we evaluate new function using the above rule, the original expression
e will be eventually evaluated twice since e and e1 are not shared anymore.

Actually, since their degree of evaluation is different (i.e., e1 comes from a one-
step reduction of e), the identification of common subexpressions by means of
some post-processing analysis is not generally feasible.

Clearly, the duplicate evaluation of e is unacceptable from a performance
point of view. Note that, in the original program, the expression e is only
evaluated once since the two occurrences of the variable n in the second rule of
function incList are shared.

Second Try: Conservative Partial Evaluation. In order to avoid downgrad-
ing performance, partial evaluators of lazy languages usually include a restriction
so that the unfolding of functions which are not right-linear (i.e., whose right-
hand side contains multiple occurrences of the same variable) is forbidden.

In this case, the partial evaluation of sumList(incList(e , [a, b])) would
mainly return the original program unchanged since the function incList is not
right-linear and, thus, cannot be unfolded. Unfortunately, this strategy is often
overly restrictive since it may happen that e can be completely evaluated at
partial evaluation time, thus allowing the subsequent reduction of sumList.

Our Proposal: Sharing-Based Partial Evaluation. Current partial evalu-
ation techniques for lazy functional (logic) languages have mostly ignored the
issue of sharing,1 generally implementing the conservative approach.

In this work, we present an alternative to such trivial, overly restrictive treat-
ment of sharing during partial evaluation. Basically, we allow the unfolding of
arbitrary function calls but still ensure that sharing is never destroyed. For this
purpose, our partial evaluation scheme is based on a lazy semantics that models
sharing by means of an updatable heap. For instance, given the above expression,
we could produce a partial computation of the form

[] & sumList(incList(e , [a, b]))
⇒ [n �→ e , x �→ a, xs �→ [b]] & sumList(x+ n : incList(n, xs))
⇒ [n �→ e1 + 42, x �→ a, xs �→ [b]] & sumList(x+ n : incList(n, xs))

1 We note that this is a critical issue that has been considered in the context of inlining
(see, e.g., [16]), which could be seen like a rather simple form of partial evaluation.

76 S. Fischer et al.

P ::= D1 . . . Dm (program) Domains
D ::= f(x1, . . . , xn) = e (function definition)
e ::= x (variable) P1, P2, . . . ∈ Prog (Programs)

| c(x1, . . . , xn) (constructor call) x, y, z, . . . ∈ Var (Variables)
| f(x1, . . . , xn) (function call) a, b, c, . . . ∈ C (Constructors)
| let {xk = ek} in e (let binding) f, g, h, . . . ∈ F (Functions)
| case x of {pk → ek} (case expression) p1, p2, p3, . . . ∈ Pat (Patterns)

p ::= c(x1, . . . , xn) (pattern)

Fig. 1. Syntax for normalized flat programs

where states are informally denoted by a pair heap & expression and [] denotes
the empty heap. Observe that there is a single binding for all occurrences of
variable n and, thus, duplicated computations are not possible. Here, we would
produce the following associated residual rule:

new function = let n = e1 + 42 in sumList(a+ n : incList(n, [b]))

where the bindings for variables x and xs are inlined since they only occur once
in the expression, and the binding for n that appears twice is kept in a let
expression so that sharing is preserved.

In summary, our new approach is based on the definition of an unfolding
strategy that extends a lazy semantics [1] (which models variable sharing by
means of an updatable heap) in order to perform symbolic computations, i.e.,
in order to deal with free variables in expressions denoting missing information
at partial evaluation time. Then, we introduce how residual rules should be
extracted from these partial computations. For simplicity, we will not introduce
the details of a complete partial evaluation scheme (but it would be similar
to that of [2] by replacing the underlying partial evaluation semantics and the
construction of residual rules from partial computations, i.e., control issues would
remain basically unaltered).

2 Preliminaries

We consider in this work a simple, first-order lazy functional language. The syn-
tax is shown in Fig. 1, where we write on for the sequence of objects o1, . . . , on. A
program consists of a sequence of function definitions such that the left-hand side
has pairwise different variable arguments. The right-hand side is an expression
composed by variables, data constructors, function calls, let bindings (where the
local variables xk are only visible in ek and e), and case expressions of the form
case x of {c1(xn1) → e1; . . . ; ck(xnk

) → ek}, where x is a variable, c1, . . . , ck

are different constructors, and e1, . . . , ek are expressions. The pattern variables
xni are introduced locally and bind the corresponding variables of ei. We say
that an expression is closed if it contains no occurrences of free variables (i.e.,
variables which are not bound by let bindings).

Preserving Sharing in Partial Evaluation 77

Observe that, according to Fig. 1, the arguments of function and constructor
calls are variables. As in [13], this is essential to express sharing without the use
of graph structures. This is not a serious restriction since source programs can
be normalized so that they follow the syntax of Fig. 1 (see, e.g., [13,1]).

Laziness of computations will show up in the description of the behavior of
function calls and case expressions. In a function call, parameters are not eval-
uated but directly passed to the body of the function. In a case expression, the
outermost symbol of the case argument is required. Therefore, the case argument
should be evaluated to head normal form [7] (i.e., a variable or an expression
with a constructor at the outermost position).

3 Partial Evaluation of Lazy Functional Programs

The main ingredients of our new proposal for preserving sharing through the
specialization process are the following: i) partial computations are performed
with a lazy semantics that models sharing by means of an updatable heap (cf.
Sect. 3.1); ii) this semantics is then extended in order to perform symbolic com-
putations during partial evaluation (cf. Sect. 3.2); iii) finally, we introduce a
method to extract residual rules from partial computations (cf. Sect. 3.3).

3.1 The Standard Semantics

First, we present a lazy evaluation semantics for our first-order functional pro-
grams that models sharing. The rules of the small-step semantics are shown in
Fig. 2 (they are a simplification of the calculus in [1], which in turn originates
from an adaptation of Launchbury’s natural semantics [13]). It follows these
naming conventions:

Γ, Δ, Θ ∈ Heap = Var → Exp v ∈ Value ::= x | c(xn)

A heap is a partial mapping from variables to expressions (the empty heap is
denoted by []). The value associated to variable x in heap Γ is denoted by Γ [x].
Γ [x �→ e] denotes a heap with Γ [x] = e, i.e., we use this notation either as a
condition on a heap Γ or as a modification of Γ . A value is a constructor-rooted
term (i.e., a term whose outermost function symbol is a constructor symbol).

A state of the small-step semantics is a triple 〈Γ, e, S〉, where Γ is the current
heap, e is the expression to be evaluated (often called the control of the small-
step semantics), and S is the stack which represents the current context. We
briefly describe the transition rules:

In rule var, the evaluation of a variable x that is bound to an expression e
proceeds by evaluating e and adding to the stack the reference to variable x. If
a value v is eventually computed and there is a variable x on top of the stack,
rule val updates the heap with x �→ v. This rule achieves the effect of sharing
since the next time the value of variable x is demanded, the value v will be
immediately returned thus avoiding the repeated evaluation of e.

78 S. Fischer et al.

var
〈Γ [x �→ e], x, S〉 ⇒ 〈Γ [x �→ e], e, x : S〉

val
〈Γ, v, x : S〉 ⇒ 〈Γ [x �→ v], v, S〉 where v is a value

fun
〈Γ, f(xn), S〉 ⇒ 〈Γ, ρ(e), S〉 where f(yn) = e ∈ P and ρ = {yn �→ xn}

let
〈Γ, let {xk = ek} in e, S〉 ⇒ 〈Γ [yk �→ ρ(ek)], ρ(e), S〉 where ρ = {xk �→ yk}

and yn are fresh variables
case

〈Γ, case e of {pk → ek}, S〉 ⇒ 〈Γ, e, {pk → ek} : S〉
select

〈Γ, c(xn), {pk → ek} : S〉 ⇒ 〈Γ, ρ(ei), S〉
where pi = c(yn) and ρ = {yn �→ xn},
with i ∈ {1, . . . , k}

Fig. 2. Small-step semantics for (sharing-based) lazy functional programs

Rule fun implements a simple function unfolding. Here, ρ : Var → Var denotes
a variable substitution. We assume that the considered program P is a global
parameter of the calculus.

In order to reduce a let construct, rule let adds the bindings to the heap and
proceeds with the evaluation of the main argument of let. Note that the variables
introduced by the let construct are renamed with fresh names in order to avoid
variable name clashes. For this purpose, we use variable renamings, a particular
case of substitutions which are bijections on the domain of variables Var .

Rule case initiates the evaluation of a case expression by evaluating the case
argument and pushing the alternatives {pk → ek} on top of the stack. If a value
is eventually reached, then rule select is used to select the appropriate branch
and continue with the evaluation of this branch.

In order to evaluate an expression e, we construct an initial state of the form
〈[], e, []〉 and apply the rules of Fig. 2. We denote by ⇒∗ the reflexive and
transitive closure of ⇒. A derivation 〈[], e, []〉 ⇒∗ 〈Γ, e′, S〉 is complete if e′ is a
value and S is the empty stack.2

Example 1. Consider the following simple functions:

double(x) = add(x, x)
add(n, m) = case n of {Z → m; S(u) → let {v = add(u, m)} in S(v)}

where natural numbers are built from Z and S. In order to evaluate the expression
double(add(Z, Z)), we proceed as follows. First, we normalize it, i.e.,

exp ≡ let {x1 = Z, x2 = Z} in (let {y = add(x1, x2)} in double(y))

Then, we construct the initial state 〈[], exp, []〉 and apply the rules of the standard
semantics. The complete derivation is shown in Fig. 3 (where variables x1, x2, y
are renamed as w1, w2, v, respectively).
2 We ignore failing derivations (e.g., a case expression with no matching branch) in

this work in order to keep the presentation simple.

Preserving Sharing in Partial Evaluation 79

〈[], exp, []〉 ⇒let 〈Γ1 ≡ [w1 �→ Z, w2 �→ Z], let {v = add(w1, w2)} in double(v), []〉
⇒let 〈Γ2 ≡ Γ1[v �→ add(w1, w2)], double(v), []〉
⇒fun 〈Γ2, add(v, v), []〉
⇒fun 〈Γ2, case v of {Z → v; S(u) → let {v = add(u, v)} in S(v)}, []〉
⇒case 〈Γ2, v, S1 ≡ [{Z → v; S(u) → let {v = add(u, v)} in S(v)}]〉
⇒var 〈Γ2, add(w1, w2), S2 ≡ v : S1〉
⇒fun 〈Γ2, case w1 of {Z → w2; S(u) → let {v = add(u, w2)} in S(v)}, S2〉
⇒case 〈Γ2, w1, S3 ≡ {Z → w2; S(u) → let {v = add(u, w2)} in S(v)} : S2〉
⇒var 〈Γ2, Z, w1 : S3〉
⇒val 〈Γ2, Z, S3〉
⇒select 〈Γ2, w2, S2〉
⇒var 〈Γ2, Z, w2 : S2〉
⇒val 〈Γ2, Z, S2〉
⇒val 〈Γ3 ≡ [w1 �→ Z, w2 �→ Z, v �→ Z], Z, S1〉
⇒select 〈Γ3, v, []〉
⇒var 〈Γ3, Z, [v]〉
⇒val 〈Γ3, Z, []〉

Fig. 3. Complete derivation for double(add(Z, Z))

Observe that the expression add(Z, Z) is only evaluated once: look at the 6th
state in the derivation, where its evaluation is first demanded (since variable
v is bound to this expression in the heap), and at the 16th state, where it is
demanded again and the computed value is just returned from the heap.

3.2 The Partial Evaluation Semantics

While expressions to be evaluated at run time should be closed (i.e., without
free variables), expressions to be partially evaluated are usually incomplete so
that missing information is denoted by means of free variables. The standard
semantics of Fig. 2 is not appropriate to perform computations at partial eval-
uation time since there is no rule for evaluating variables that are not bound in
the associated heap.

In this work, we follow the approach of [3] and introduce a residualizing version
of the standard semantics.3 Essentially, the resulting partial evaluation semantics
has the following features:

– A free variable x is represented in a heap Γ by a circular binding x �→ x
such that Γ [x] = x. Furthermore, such free variables are now considered as
values in rule val.

– Sharing is preserved thanks to the use of an unfolding strategy based on
a (residualizing) semantics that models sharing, together with an appropri-
ate procedure for extracting residual rules from partial computations (see

3 Note, however, that [3] does not consider a sharing-based standard semantics and,
thus, the residualizing extensions are rather different.

80 S. Fischer et al.

fun stop
〈Γ, f(xn), x : {pk → ek} : S〉 ⇒ 〈Γ [x �→ f(xn)], case x of {pk → ek}, S〉

case stop
〈Γ, case y of {p′

q → e′
q}, x : {pk → ek} : S〉

⇒ 〈Γ [x �→ case y of {p′
q → e′

q}], case x of {pk → ek}, S〉
guess

〈Γ [x �→ x], x, {pk → ek} : S〉 ⇒ 〈Γ [x �→ x], case x of {pk → ek}, S〉
case of case

〈Γ [x �→ x], case x of {p′
m → e′

m}, {pk → ek} : S〉
⇒ 〈Γ [x �→ x], case x of {p′

m → case e′
m of {pk → ek}}, S〉

residualize
〈Γ [x �→ x], case x of {pk → ek}, []〉 ⇒ case x of {p′

k → 〈Γ [x �→ p′
k, ynk �→ ynk], e′

k, []〉}
where pi = c(xni), ρi = {xni �→ yni}, yni are fresh,
with p′

i = ρi(pi), and e′
i = ρi(ei), for all i = 1, . . . , k

Fig. 4. Partial evaluation rules

Sect. 3.3). This is orthogonal to control issues and, thus, our approach can
be integrated in both online or offline partial evaluation schemes (see, e.g.,
[10] for a gentle introduction to online and offline partial evaluation). For
simplicity, though, we consider in the following an offline scheme for partial
evaluation and assume that the program contains some function annotations
that can be used to ensure the termination of partial computations.

To be precise, we denote annotated function calls by underlining the
function name and annotated case expressions by underlining the word case.
Basically, annotated function calls or case expressions should not be reduced
in order to have a finite computation.4

Underlined function calls and case expressions are no longer evaluable and,
thus, they are also treated as values in rule val.

Because of the introduction of the new “values” (free variables and annotated
functions and cases), rule select does not suffice anymore to evaluate a case
expression whose argument reduces to a value. Therefore, we introduce the rules
shown in Fig. 4, which we now briefly describe.

Rule fun stop applies when the argument of a case expression evaluates to
an annotated function call f(xn). Here, the form of the current stack is x :
{pk → ek} : S, which means that the original case expression had the form
case x of {pk → ek} and x was eventually reduced to f(xn). In this case, we an-
notate the original case expression (since it is not reducible because f(xn) is not
reducible), update the binding for x, and return the annotated case expression.
Intuitively speaking, once an annotated function call suspends the computation,
we should go backwards and reconstruct the case expression whose branches were
stored in the stack: case f(xn) of {pk → ek}.
4 We do not deal with termination issues and the computation of program annota-

tions in this paper but refer the interested reader to, e.g., [9,11,12,17,6] (within the
functional and functional logic paradigms).

Preserving Sharing in Partial Evaluation 81

Rule case stop proceeds in a similar way, the only difference being that the
computed value is now an annotated case expression.

Rule guess applies when the argument of a case expression reduces to a free
variable. Similarly to the previous rules, an annotated case expression is re-
turned. Observe, however, that it does not mean that the computation is sus-
pended; rather, the annotated case expression can still be further evaluated by
rules case of case and residualize (see below).

Rule case of case, originally introduced in the context of deforestation [18],
is used to reduce a case expression whose argument is another case with a free
variable as argument. It moves the outer case to the branches of the inner case,
e.g., it transforms an expression like

case (case x of {p1 �→ e1; p2 �→ e2}) of {q1 �→ t1; q2 �→ t2}
into case x of { p1 �→ case e1 of {q1 �→ t1; q2 �→ t2};

p2 �→ case e2 of {q1 �→ t1; q2 �→ t2} } .

It is often the case that the transformed expression has more opportunities for
further reduction (look at the inner cases, where possibly known arguments e1
and e2 may allow the application of rule select). Basically, we use this rule to
lift case expressions with a free variable to the topmost position so that rule
residualize applies.

Finally, rule residualize residualizes a case expression (i.e., it is already con-
sidered part of the residual code) but allows us to continue evaluating the states
in the branches of the residualized case expression. Observe that, because of this
rule, the type of the semantics is no longer State → State, where State is the
domain of possible states, but StateExp → StateExp , where StateExp is defined
as follows: StateExp ::= State | case x of {pk → StateExp}. Note that bindings
of the form x �→ p′i, i = 1, . . . , k, are applied to the different branches so that
information is propagated forward in the computation. As in rule let, we rename
the variables of the case patterns to avoid variable name clashes, so that p′i and
e′i denote the renaming of pi and ei, respectively. Moreover, since the pattern
variables of p′i are not bound in e′i, we add them to the heap as free variables,
i.e., as circular bindings of the form yni �→ yni.

Now, our partial evaluation semantics includes the rules of Fig. 2 (standard
component) and Fig. 4 (residualizing component). We note that rule val overlaps
with rules fun stop and case stop since annotated expressions are considered
values. This overlapping is not intended and can easily be avoided by adding an
additional side condition for rule val:

(val redefined)

〈Γ, v, x : S〉 ⇒ 〈Γ [x �→ v], v, S〉 if rules fun stop & case stop are not applicable
where v is a value

Also, we note that an additional condition should be added in rule var in order
to avoid undesired loops due to the evaluation of free variables:

(var redefined)

〈Γ [x �→ e], x, S〉 ⇒ 〈Γ [x �→ e], e, x : S〉 where e
= x

82 S. Fischer et al.

In our partial evaluation semantics, we should always construct complete com-
putations, i.e., we should apply the rules of the partial evaluation semantics as
much as possible. Note that it does not mean that every function is unfolded,
since one can still stop the unfolding process by means of annotations (so that
termination is guaranteed). Then, we have the following trivial property:

Lemma 1. Let s0, sn ∈ StateExp be states such that there exists a complete
derivation s0 ⇒∗ sn using the rules of the partial evaluation semantics (Figures 2
and 4). Then, every state s ∈ State occurring in sn has an empty stack.

This result is an easy consequence of the fact that every function and case
expression is either reduced, annotated or residualized, so that an empty stack
is eventually obtained.

Another trivial but important property relates the standard and the partial
evaluation semantics as follows:

Lemma 2. Let P be a program without annotations and s0 = 〈[], e, []〉 be an
initial state where e is closed. Then, s0 ⇒∗ sn holds in the standard semantics
iff s0 ⇒∗ sn holds in the partial evaluation semantics.

Intuitively speaking, the above lemma says that, as long as no annotated function
call occurs, both calculi have exactly the same behavior.

The following simple example illustrates the way our partial evaluation se-
mantics deals with sharing in a partial computation.

Example 2. Consider again functions double and add from Example 1 and the
initial expression double(double(x)). By normalizing this expression, we build
the following initial state:

〈[], let {x = x, w = double(x)} in double(w), []〉

The associated complete computation with the partial evaluation semantics is
shown in Fig. 5 (variables x and w are renamed as n and m, respectively). Note
that, thanks to the use of the partial evaluation semantics, we can evaluate
the considered expression as much as needed but we still keep track of shared
expressions in the associated heap.

3.3 Extracting Residual Rules

Now, we consider how residual rules are extracted from the computations per-
formed with the semantics of Figures 2 and 4.

Definition 1 (resultant). Let P be an annotated program and e be an expres-
sion. Let 〈[], e, []〉 ⇒∗ e′ be a complete derivation with the rules of Figures 2 and 4
(i.e., e′ is irreducible). The associated resultant is given by the following rule:

f(xn) = [[del (e′)]]

Preserving Sharing in Partial Evaluation 83

〈[], let {x = x, w = double(x)} in double(w), []〉
⇒let 〈[n �→ n, double(m), []〉

m �→ double(n)],
⇒fun 〈[n �→ n, add(m, m), []〉

m �→ double(n)],
⇒fun 〈[n �→ n, case m of []〉

m �→ double(n)], {Z → m; S(u) → let {v = add(u, m)} in S(v)}
⇒case 〈[n �→ n, m, [{. . .}]〉

m �→ double(n)],
⇒var 〈[n �→ n, double(n), [m, {. . .}]〉

m �→ double(n)],
⇒fun stop 〈[n �→ n, case m of []〉

m �→ double(n)], {Z → m; S(u) → let {v = add(u, m)} in S(v)}

Fig. 5. Derivation with the partial evaluation semantics

where f is a fresh function symbol,5 xn are the free variables of e (appropriately
renamed as in the considered computation), function del removes the annotations
(if any), and function [[]] is defined as follows:

[[e]] =
{

case x of {pk → [[ek]]} if e = case x of {pk → ek}
let Γ in e′ if e = 〈Γ, e′, []〉

Here, Γ represents the set of bindings stored in Γ except those for xn (which are
now the parameters of the new function).

Let us illustrate the extraction of a residual rule with an example.

Example 3. Consider the computation of Example 2 shown in Fig. 5. The asso-
ciated resultant is as follows:

f(n) = [[〈 [n �→ n, case m of
m �→ double(n)], {Z → m; S(u) → let {v=add(u, m)} in S(v)}, []〉]]

which is reduced to

f(n) = let {m �→ double(n)} in
case m of {Z → m; S(u) → let {v = add(u, m)} in S(v)}

Observe that sharing is preserved despite the unfolding of a function which is not
right-linear (i.e., the outer call to function double). Note also that inlining the
let expression (i.e., replacing all occurrences of m by double(n)) would destroy
this property since double would be evaluated twice, once as an argument of
the case expression and once when selecting the corresponding case branch.

5 Consequently, some calls in the right-hand side should also be renamed. We do not
deal with renaming of function calls in this paper; nevertheless, standard techniques
for functional (logic) languages like those in [4] would be applicable.

84 S. Fischer et al.

3.4 Correctness

The correctness of our approach to the partial evaluation of first-order lazy
functional programs relies on two results. On the one hand, one should prove
that the partial evaluation semantics is somehow equivalent to the standard
one. Regarding the extraction of resultants from computations with the partial
evaluation semantics, its correctness can easily be proved by exploiting the clear
operational equivalence between a state of the form 〈Γ, e, []〉 and an expression
like let Γ in e (i.e., we have that 〈[], let Γ in e, []〉 reduces to 〈Γ, e, []〉 in one
reduction step by applying rule let).

Let us first consider the equivalence between the standard and the partial eval-
uation semantics for closed expressions. In the following, we say that two states
〈Γ, e, S〉 and 〈Γ ′, e′, S′〉 are equivalent under annotations, in symbols 〈Γ, e, S〉 ≈
〈Γ ′, e′, S′〉, iff Γ and Γ ′ become equal when removing bindings with annotated
expressions, e = e′, and S = S′. By abuse, we say that a derivation is complete
when no more rules are applicable, even if this is due to an annotated function
call (which is irreducible in the standard semantics since it does not deal with
annotations).

Theorem 1. Let P be an annotated program and s be an initial state. If s ⇒∗ s′

is a complete derivation in P with the standard semantics then, for any deriva-
tion s ⇒∗ s′ ⇒∗ 〈Γ, e, []〉 in P with the partial evaluation semantics, we have
〈Γ, e, []〉 ⇒∗ s′′ with the standard semantics and s′ ≈ s′′.

Intuitively, the above result can be depicted graphically as follows (SS and PES
stand for Standard Semantics and Partial Evaluation Semantics, respectively):

〈[], e0, []〉
SS

���������∗��������� PES
��������
∗��������

〈Γs, es, Ss〉 〈Γ, e, []〉
SS

��
∗
��

Proof. Let s ⇒∗ s′ in P with the standard semantics, where s′ = 〈Γs, es, Ss〉.
Now, we distinguish two possibilities. If es is a value (and, thus, Ss = []) then
the proof is trivial by Lemma 2, with 〈Γ, e, []〉 = 〈Γs, es, Ss〉.

Otherwise, es ≡ f(xn) for some function symbol f . By Lemma 2, we have
s ⇒∗ s′ with the partial evaluation semantics. Trivially, since e was closed,
only rules fun stop and case stop from the partial evaluation semantics can be
applied to s′. Let s′ ⇒∗ 〈Γ, e, []〉 be a derivation with the partial evaluation
semantics where rules fun stop and case stop are applied as much as possible.
Then, we can also construct a sort of inverse computation using rules case and
var from the standard semantics; namely, every application of rule fun stop or
case stop can be undone by applying rules case and var in this order. Hence,
we have 〈Γ, e, []〉 ⇒∗ 〈Γ ′′, e′′, S′′〉 ≡ s′′ by applying rules case and var as much
as possible. Finally, it is clear that s′ ≈ s′′ since Γ ′′ adds only bindings with
annotated expressions to Γs, e′′ = es, and S′′ = Ss.

Now, we focus on expressions which are not closed. Since this is orthogonal to
program annotations, we now consider programs without annotations.

Preserving Sharing in Partial Evaluation 85

In the following, we introduce the following reduction rules over the expres-
sions produced by the partial evaluation semantics:

case c(vn) of {pk → ek} ↪→ σi(ei) if pi = c(yn) and σi = {yn �→ vn}
s ↪→ s′ if s ⇒ s′ with the standard semantics

These rules are used to evaluate expressions from StateExp (as returned by rule
residualize). Our next result is then stated as follows:

Theorem 2. Let P be a program and e be a (not necessarily closed) expression.
Let σ be a substitution mapping the free variables of e to values. If there exists a
complete derivation 〈[], σ(e), []〉 ⇒∗ 〈Γ, v, []〉 with the standard semantics, then
for all derivations 〈[], e, []〉 ⇒∗ s with the partial evaluation semantics we have
σ(s) ↪→∗ s′ and s′ ≈ 〈Γ, v, []〉.
Intuitively speaking, this result ensures that computations with the partial eval-
uation semantics and some incomplete expression including free variables appro-
priately capture every possible computation with the standard semantics and a
closed instance of the incomplete expression.

Proof. For simplicity, we consider that e contains a single free variable x and that
σ = {x �→ c} maps x to a constructor constant c. Assume that the derivation
with the standard semantics has the form

〈[], σ(e), []〉 ⇒∗ 〈Γx[x �→ c], x, [{pk → ek}]〉
⇒var 〈Γx[x �→ c], c, x : {pk → ek}〉
⇒val 〈Γx[x �→ c], c, [{pk → ek}]〉
⇒select 〈Γx[x �→ c], ei, []〉 (with pi = c, i ∈ {1, . . . , k})
⇒∗ 〈Γ, v, []〉

Observe that we considered a stack with the branches of a single case expression.
A generalization to consider nested case expressions is not difficult and only
require some additional applications of rule case of case.

Trivially, we have 〈[], e, []〉 ⇒∗ 〈Γx, x, [{pk → ek}]〉 with the standard seman-
tics. Therefore, 〈[], e, []〉 ⇒∗ 〈Γx, x, [{pk → ek}]〉 is also a derivation with the
partial evaluation semantics by Lemma 2.

We now consider two possibilities for the partial evaluation semantics. If the
derivation is stopped before applying rule guess, the claim follows trivially by
the definition of ↪→. Otherwise, we have a derivation of the form

〈[], e, []〉 ⇒∗ 〈Γx[x �→ x], x, [{pk → ek}]〉
⇒guess 〈Γx[x �→ x], case x of {pk → ek}, []〉
⇒residualize case x of {pk → 〈Γx[x �→ ρk(pk), ynk �→ ynk], ρk(ek), []〉}
⇒∗ . . .

Now, the claim follows since

case σ(x) of {pk → 〈Γx[x �→ ρk(pk), ynk �→ ynk], ρk(ek), []〉} ↪→ 〈Γx[x �→ c], ei, []〉

and the fact that there are no more free variables (and, thus, computations in
the standard and the partial evaluation semantics coincide from this point on).

86 S. Fischer et al.

4 Partial Evaluation in Practice

We have already developed an offline partial evaluator for functional and func-
tional logic programs following the basic technique of [17] (later improved with
a stronger termination analysis in [6]). The implementation is publicly available
from http://www.dsic.upv.es/~gvidal/german/offpeval/.

Now, we have added the new unfolding strategy presented so far (i.e., the
rules of Figures 2 and 4), together with the procedure for the extraction of
resultants of Sect. 3.3. In order to check the usefulness of the new approach, we
have considered three different unfolding strategies:
(aggressive) This strategy does not take into account the linearity of functions,

i.e., a function call is annotated (classified as “not unfoldable”) only if there is
a risk of nontermination (according to the already implemented termination
analysis [6]). Furthermore, unfolding is performed with a semantics that does
not model sharing.

(conservative) This strategy annotates a function call if either there is a risk
of nontermination or the associated function definition is not right-linear.
Again, unfolding is performed with a semantics that does not model sharing.

(sharing-based) This is the new strategy described in this paper, where function
calls are annotated only if there is a risk of nontermination but a sharing-
based unfolding is used.

The first two strategies could easily be adopted by the old partial evaluator, but
the third one required the implementation of the sharing-based partial evaluation
semantics.

We have tested the implemented system on a number of examples, and the
sharing-based strategy generally produces residual programs which are as good
as the best of the other two strategies.

Let us illustrate this point with some examples. Consider the program (in
Haskell-like notation) shown in Fig. 6. The annotations are given by the termi-
nation analysis of our partial evaluator when considering the expression

dapp (incList (S100 Z) x)

to be partially evaluated, where (S100 Z) is a shorthand for the natural number
S (S (. . . Z)) with 100 nested applications of S.

Now, the three strategies mentioned above proceed as follows:
(aggressive) Here, we get the following residual program:

new [] = []
new (y : ys) = (S100 y) : append (incList100 ys) (incList100 (y : ys))

incList100 [] = []
incList100 (x : xs) = (S100 x) : (incList100 xs)

together with the original definition of append. The following function re-
namings were considered:

dapp (incList (S100 Z) x) �→ new x
incList (S100 Z) x �→ incList100 x

Preserving Sharing in Partial Evaluation 87

append [] x = x dapp x = append x x
append (x : xs) ys = x : append xs ys

incList n [] = [] add Z m = m
incList n (x : xs) = (add n x) : (incList n xs) add (S n) m = S (add n m)

Fig. 6. Double-append program

Observe that function new has repeated calls to function incList100, which
will cause a slower execution of the residual program.

(conservative) This strategy basically returns the original program unchanged
because the call to dapp is also annotated in order to avoid the unfolding of
a function which is not right-linear. In this case, no slowdown is produced
in the residual program, but its run time is essentially the same as that of
the original program.

(sharing-based) By using our new partial evaluation semantics, we get the fol-
lowing residual program:

new [] = []
new (y : ys) = let w = incList100 (y : ys) in append w w

incList100 [] = []
incList100 (x : xs) = (S100 x) : (incList100 xs)

together with the original definition of append. Here, we use the same re-
namings of the aggressive strategy.

In this case, the performance of the residual program is comparable to
the outcome of the conservative approach, i.e., we avoid producing a slower
residual program but no significant improvement is achieved.

Now, consider the following expression to be partially evaluated:

dapp (decList x [Z, Z, Z])

where function decList is defined as follows:

decList n [] = []
decList n (x : xs) = (minus n x) : (decList n xs)

minus n Z = n
minus (S n) (S m) = minus n m

The difference with the previous example is that the inner call to decList can
be fully unfolded. Now, the three strategies mentioned above proceed as follows:

(aggressive) It returns a residual program of the form

new x = [x, x, x, x, x, x]

where (dapp (decList x [Z, Z, Z])) is renamed as (new x).

88 S. Fischer et al.

(conservative) This strategy basically returns the original program unchanged
because the call to dapp is not unfolded.

(sharing-based) We get the same residual program as in the aggressive case. No
let expression is necessary in the residual rule since the argument of dapp is
fully evaluated and thus repeated values are not problematic (note that the
residual function new can only be called with a value, see Theorem 2).

To summarize, our preliminary experiments are encouraging and show that the
new sharing-based approach could be able to get the best of previous approaches.

5 Discussion

Despite the extensive literature on partial evaluation, we are not aware of any
approach to the specialization of lazy functional languages where sharing is pre-
served through the specialization process in a non-trivial way. For instance, [2,3]
presents a partial evaluation scheme for a lazy language but sharing is not pre-
served since the underlying semantics does not model variable sharing.

In this paper, we have presented a novel approach by first extending a standard
lazy semantics (where sharing is modeled by using an updatable heap) and,
then, defining a method to properly extract the associated residual rules. Our
approach is not overly restrictive since every function can be unfolded (even if
it is not right-linear) and still preserves sharing, thus avoiding the introduction
of redundant computations in the residual program.

Acknowledgements

We gratefully acknowledge the anonymous referees as well as the participants of
LOPSTR 2007 for many useful comments and suggestions.

References

1. Albert, E., Hanus, M., Huch, F., Oliver, J., Vidal, G.: Operational Semantics for
Declarative Multi-Paradigm Languages. Journal of Symbolic Computation 40(1),
795–829 (2005)

2. Albert, E., Hanus, M., Vidal, G.: A Practical Partial Evaluation Scheme for
Multi-Paradigm Declarative Languages. Journal of Functional and Logic Program-
ming 2002(1) (2002)

3. Albert, E., Hanus, M., Vidal, G.: A Residualizing Semantics for the Partial Eval-
uation of Functional Logic Programs. Information Processing Letters 85(1), 19–25
(2003)

4. Alpuente, M., Falaschi, M., Julián, P., Vidal, G.: Specialization of Lazy Functional
Logic Programs. In: Proc. of the ACM SIGPLAN Conf. on Partial Evaluation and
Semantics-Based Program Manipulation, PEPM 1997, vol. 32, pp. 151–162. ACM
Press, New York (1997)

5. Andersen, L.O.: Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen (1994)

Preserving Sharing in Partial Evaluation 89

6. Arroyo, G., Ramos, J.G., Silva, J., Vidal, G.: Improving Offline Narrowing-Driven
Partial Evaluation using Size-Change Graphs. In: Puebla, G. (ed.) LOPSTR 2006.
LNCS, vol. 4407, pp. 60–76. Springer, Heidelberg (2007)

7. Barendregt, H.P.: The Lambda Calculus—Its Syntax and Semantics. Elsevier, Am-
sterdam (1984)

8. Bondorf, A.: Similix 5.0 Manual (1993)
9. Bondorf, A., Jørgensen, J.: Efficient Analyses for Realistic Off-Line Partial Evalu-

ation. Journal of Functional Programming 3(3), 315–346 (1993)
10. Consel, C., Danvy, O.: Tutorial notes on Partial Evaluation. In: Proc. of the ACM

Symp. on Principles of Programming Languages, pp. 493–501. ACM, New York
(1993)

11. Glenstrup, A.J., Jones, N.D.: Termination analysis and specialization-point inser-
tion in offline partial evaluation. ACM TOPLAS 27(6), 1147–1215 (2005)

12. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice-Hall, Englewood Cliffs, NJ (1993)

13. Launchbury, J.: A Natural Semantics for Lazy Evaluation. In: Proc. of the ACM
Symp. on Principles of Programming Languages (POPL 1993), pp. 144–154. ACM
Press, New York (1993)

14. Leuschel, M., Elphick, D., Varea, M., Craig, S., Fontaine, M.: The Ecce and Logen
Partial Evaluators and Their Web Interfaces. In: Proc. of PEPM 2006, pp. 88–94.
IBM Press (2006)

15. Peyton-Jones, S. (ed.): Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, Cambridge (2003)

16. Peyton Jones, S.L., Marlow, S.: Secrets of the Glasgow Haskell Compiler Inliner.
Journal of Functional Programming 12(4&5), 393–433 (2002)

17. Ramos, J.G., Silva, J., Vidal, G.: Fast Narrowing-Driven Partial Evaluation for
Inductively Sequential Systems. In: Proc. of the 10th ACM SIGPLAN Int’l Conf.
on Functional Programming (ICFP 2005), pp. 228–239. ACM Press, New York
(2005)

18. Wadler, P.L.: Deforestation: Transforming programs to eliminate trees. Theoretical
Computer Science 73, 231–248 (1990)

Denotation by Transformation?

Towards Obtaining a Denotational Semantics by
Transformation to Point- ree Style

Bernd Braßel and Jan Christiansen

Institute of Computer Science
University of Kiel, 24098 Kiel, Germany
{bbr,jac}@informatik.uni-kiel.de

Abstract. It has often been observed that a point-free style of pro-
gramming provides a more abstract view on programs. We aim to use
the gain in abstraction to obtain a denotational semantics for functional
logic languages in a straightforward way. Here we propose a set of basic
operations based on which arbitrary functional logic programs can be
transformed to point-free programs. The semantics of the resulting pro-
grams are strict but, nevertheless, the semantics of the original program
is preserved.

There is a one-to-one mapping from the primitives introduced by the
transformation to operations in relation algebra. This mapping can be
extended to obtain a relation algebraic model for the whole program.
This yields a denotational semantics which is on one hand closely related
to point-free functional logic programs and on the other hand connects
to the well-developed field of algebraic logic including automatic proving.

1 Introduction

The importance of a point-free view on programming has been emphasized par-
ticularly in the applications of category theory to semantics of programming
languages. The concrete advantage of point-free style is the possibility to treat
programs adhering to it in an algebraic way. The goals of an algebraic approach
are mainly: a) elegance of the provided formalism which in practice directly
results in what we call “proof economy” and b) the possibility to employ auto-
matic proof procedures. Both goals have received a serious damper in the recent
development of the field [7, 8]. There we find the disillusioning summary that
the state of the art “contradicts the general assumption that calculations in this
[point-free] style are more amenable to mechanization” [7, Chapter 8]. In our
opinion the situation can be improved by two means: 1.) develop transforma-
tions to point-free style which keep much more structure of the original programs
and 2.) connect to a well-developed theory with an existing approach to auto-
mated proving. The first point is important to enable the formulation of the
lemmas needed in any substantial proof and even more important to understand

? This work has been partially supported by the DFG under grant Ha 2457/1-2.

F

King, A. (Ed.): LOPSTR 2007, LNCS 4915, pp. 90105 , 2008.
c© Springer-Verlag Berlin Heidelberg 2008

–

the resulting proof or a counter example, respectively. The interested reader
is referred to [5] for an example comparing the readability of our approach to
two others, [16] and [8]. The second point is realized by providing a semantics
for the point-free programs within the framework of relation algebra. The se-
mantics of the whole program is directly obtained by interpreting the primitive
operations, which were introduced by the transformation, as relation algebraic
operations. Relation algebra is a well-developed field of algebraic logic [19] for
which approaches to proof automation have been developed, cf, e.g., [15]. In this
paper we describe the transformation to point free style (Section 2) and prove
its correctness (Section 3). The relation algebraic model we developed for our
programs is described in [4].

1.1 Functional Logic Programming Languages

We consider a functional logic program as a constructor-based rewriting system,
allowing extra variables on the right hand side. This section establishes some
of the involved notation, which is mostly following [10, 12]. For our examples
we adopt the syntax of Curry [14] although the transformation we develop is
compatible with other functional logic languages like Toy [17].

ΣP is the signature of a program P partitioned into two sets, the set of con-
structors CP and the set of defined operations OP . We denote n-ary constructor
(operation) symbols by cn (fn, gn) omitting the arity where it is apparent. For
a set of variables X , the sets of terms and constructor terms are denoted by
T (ΣP ,X) and T (CP ,X), respectively. The function var(t) yields the set of vari-
ables occurring in term t. A term is linear if every variable occurs at most once. A
linear constructor term is called a pattern. Constructors are introduced by a data

declaration, as shown in Example (1). The “a” in the third declaration denotes
that [a] is a polymorphic type. Operations are defined by rewrite rules of the

data Success = Success

data Bool = True | False

data [a] = [] | a : [a]

(1)
form “f p1 . . . pn = e” where fn ∈ OP

and p1, . . . , pn are patterns. The right hand
side e may contain extra variables, i.e., vari-
ables which do not occur in the patterns of

the left hand side. To cope with extra variables rewriting is extended to nar-
rowing [9]. In our context this means that a narrowing step is a rewrite
step that includes the replacement of extra variables by constructor terms.
We call such a replacement a constructor substitution and denote it by σ
or by θ. The set of all constructor substitutions is denoted by CSubst .

app [] ys = ys

app (x:xs) ys = x : (app xs ys)
(2)

A possible narrowing step for Exam-
ple 2 is app x [True] →{x 7→ []}
[True], where x is an extra variable.

In addition to defining rules, type signatures are used to declare the sorts of an
operation. For example, app :: [a] -> [a] -> [a] declares that app maps two
(polymorphic) lists to a list. These lists have elements of the same type.

As in Example (2) there might be more than one possible narrowing step.
Functional logic languages provide non-deterministic search to obtain values
in this situation. Non-determinism does not only stem from narrowing but

Denotation by Transformation 91

coin :: Bool

coin = True

coin = False

(3)
also from operator definitions with overlapping left hand
sides. For Example (3), there are two derivations coin →
True and coin → False or, for short, coin → True | False.

2 Transformation to Point- ree Style By Example

The term point-free originates from topology where you have points in a space
and functions that operate on these points. In functional programming spaces
are types, functions are functions and points are the arguments of a function.
In point-free style you do not explicitly access the points, that is, the arguments
of a function. The idea of the point-free programming paradigm is to build
functions by combining simpler ones. The term was introduced by John Backus
in his Turing Award Lecture in 1977 [2]. The counterpart of point-free is point-
wise, that is, functions that explicitly access their arguments. In this section we
define a small set of point-wise operations which allow the definition of arbitrary
functional logic operations in a point-free style. We present only the idea of the
transformation here and give a formal definition in the next section.

Composition of Operations The first “primitive” is sequential composition,
occasionally simply referred to as “composition”.

(*) :: (a -> b) -> (b -> c) -> a -> c

(f * g) x = g (f x)
(4) gf

The primitive (*) is a flipped version of (.). Whereas (f . g) reads as “f after
g”, (f * g) is more like “f before g”. This is more convenient with regard to our
aim of a relation-algebraic treatment of programming semantics. Furthermore,
the left-to-right reading provides a very descriptive graphical representation. The
composition is visualised by connecting two operations with a line, indicating
that the output of one is the input of the other. Simple definitions can be made
point-free using sequential composition (5).

involution x = not (not x)

involution = not * not
(5) notnot

Operations with several arguments are composed by parallel composition.

(/) :: (a -> c) -> (b -> d) -> (a,b) -> (c,d)

(f / g) (x,y) = (f x,g y)
(6)

f

g

Example (7) shows the use of parallel composition. All primitives are right asso-
ciative. Instead of using precedences we use parenthesises to increase readability.

nor :: Bool -> Bool -> Bool

nor x y = not x && not y

nor :: (Bool,Bool) -> Bool

nor = (not / not) * and

(7) and

not

not

F

.

92 and J. ChristiansenB. Braßel

We have effectively changed the type of nor to a so called “uncurried” version.
That is, instead of taking a pair of arguments it takes only a single argument.
Multiple arguments are combined by using tuples. We use curried operations
only when higher order is employed, as discussed in Paragraph “Higher Order”.

Interface Adaption So far, we can express only right linear rules. Sharing ar-

fork :: a -> (a,a)

fork x = (x,x)
(8)

guments is the first of the primitives deal-
ing with what we call “interface adaption”.
Interface adaption means that the connec-

tives of two operations have to be copied or reordered in some way. An uncurried
and point-free version of “if and only if” (9) can be formulated using fork.

(<=>) :: Bool -> Bool -> Bool

x <=> y = x && y || not x && not y

(<=>) :: (Bool,Bool) -> Bool

(<=>) = fork * (and / ((not / not) * and)) * or

(9)
or

and

and

not

not

There are four more primitives for interface adaption. The operator unit to
“discard a value”, the identity id to “pass a value on” and fst and snd to “select
a value”. All these primitives are exemplified in the following sections.
unit :: a -> ()

unit x = ()
(10) id :: a -> a

id x = x
(11)

fst :: (a,b) -> a

fst (x,y) = x
(12) snd :: (a,b) -> b

snd (x,y) = y
(13)

Data Structures and Pattern Matching We do not wish to abstract from
concrete domains in order to make the resulting programs more readable. We re-

data List a = Nil ()

| Cons (a,List a)

data Bool = True ()

| False ()

(14)

place constructor definitions by their
uncurried versions. For instance, in-
stead of the declarations for [a] and
Bool from Example (1) we obtain the
declarations shown in Example (14).

Note that for uniformity also the constants True, False, and Nil are extended
with an argument. This simplifies the definitions of destructors in the following.

To express pattern matching we introduce a destructor for every constructor.
This operation inverts the constructor, i.e., it peels off the outermost constructor
and yields its arguments. Example (15) presents the destructors corresponding
to the constructors from Example (14).

invNil :: List a -> () invTrue, invFalse :: Bool -> ()

invNil (Nil x) = x invTrue (True x) = x

invCons :: List a -> (a,List a) invFalse (False x) = x

invCons (Cons x) = x

(15)

Now it becomes apparent why constant constructors are extended with an argu-
ment: to make them invertible. Note also that the definition of the destructors

.

.

.

Denotation by Transformation 93

follows a very simple pattern. Using the destructor invCons and fst and snd the
standard functions head and tail can easily be expressed.
head :: List a -> a tail :: List a -> List a

head = invCons * fst tail = invCons * snd
(16)

To combine several rules we employ an additional feature of functional logic
programming, i.e., non-determinism. The operator (?) allows a very elegant way
of expressing pattern matching in a point-free style.
(?) :: (a -> b) -> (a -> b) -> a -> b

(f ? g) x = f x

(f ? g) x = g x

(17) coin :: () -> Bool

coin = True ? False
(18)

As stated in the introduction, overlapping rules in functional logic languages
lead to non-deterministic search [13]. In principle, all non-determinism can be
introduced by a single operation with overlapping rules (17). We use (?) to
combine the rules of a function (18). Note that the introduction of the argument
() for constant constructors extends to all definitions of constants. Example (19)
shows the point-free version of null which tests whether a list is empty or not.

null = (invNil * True) ? (invCons * unit * False) (19)

The astute reader might wonder why we introduce non-determinism for a per-
fectly deterministic operation like the pattern matching of null. The reason for
this is twofold. 1) From a semantic point of view the non-deterministic branching
does not matter. If the matching was indeed deterministic, for a given determinis-
tic value all but one branch will finitely (even immediately) fail. 2) In a functional
logic language patterns are not always deterministic nor treated in a sequential
way (like in Haskell). Overlapping patterns induce non-determinism which is eas-

member :: [a] -> a

member (x:xs) = x

member (x:xs) = member xs

(20)

ily captured by our approach. For example,
the operation member defined in (20) non-
deterministically relates a list with each of
its elements. Without further additions this

behaviour is captured by the transformation. The following definition shows a
point-free version of member. It also illustrates that recursive functions simply
stay recursive. There is no need for changes, e.g., a special recursion operator.

member = (invCons * fst) ? (invCons * snd * member) (21)

unknown :: () -> a

unknown () = x

where x free

(22)
There is one more feature that is specific to func-
tional logic languages: free variables. To introduce
free variables we employ the primitive unknown (22).
The keyword free is used to define extra variables.

Higher Order In order to introduce higher-order operations we need to adapt
the well-known pair apply and curry to our setting.
apply :: (a -> b,a) -> b

apply (f,x) = f x
(23) curry :: ((a,b) -> c) -> a -> b -> c

curry f x y = apply (f,(x,y))
(24)

.

9 and J. ChristiansenB. Braßel4

point-free world apply takes a tuple of arguments and curry uses this apply op-
eration instead of the predefined application. We illustrate the use of apply by a

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

(25)

standard example of a higher-order
operation in Example (25). We as-
sume adapt to map the tuple structure
(f,(x,xs)) to ((f,x),(f,xs)) and omit

its concrete definition by means of (/), fst, snd and fork.
map :: (a -> b,[a]) -> [b]

map = ((id / invNil) * unit * Nil)

? ((id / invCons) * adapt * (apply / map) * Cons)

(26)

We map the operation not on the list Cons (False (),Cons (True (),Nil ())).

val :: a -> () -> a

val f () = f
(27)

We have to consider that values of type a in the
original program correspond to operations of type
() -> a in the point-free program. For example,

the point-free version of coin :: Bool is coin :: () -> Bool. Because higher-
order operations should be first class objects we need to translate them in
the same way. An operation of type (a -> b) must become an object of type
() -> (a -> b). Therefore we introduce the primitive val which takes a higher
order object and yields a value.1 By using val in the definition of mapNot we get
a higher order value representing the operation not. We do not need to use curry

because not takes only one argument and is therefore uncurried. The application
(mapNot ()) evaluates to Cons (False (),Cons (True (),Nil ())) as intended.
not = (invTrue * False) ? (invFalse * True)

listFalseTrue = fork * (False / (fork * (True / Nil) * Cons)) * Cons

mapNot = fork * (val not / listFalseTrue) * map

(28)

We have illustrated all the point-wise primitives necessary to translate arbitrary
functional logic programs: (*) (4), (/) (6), fork (8), unit (10), id (11), (?) (17),
fst (12), snd (13), unknown (22), apply (23) and curry (24).

3 Obtaining Point- ree Style in General

In this section we give a formal definition of the transformation that was moti-
vated in Section 2. There is a necessary preliminary step to the transformation
described so far. This step is quite interesting in itself, as it transforms a lazy
functional logic program to a strict functional logic program nevertheless pre-
serving its denotational semantics. The main idea is to replace laziness by the
non-deterministic choice of whether to evaluate a given function application or
not. Whereas such a transformation might be a bad idea from an operational
point of view, it is very convenient for semantic purposes. As we will see, it
is straightforward to prove the main properties of the transformation to strict
programs with respect to existing semantics of functional logic languages.
1 Incidentally, the type of val is more general and does not only work for higher order

types. In an extended setting with base types we also use it to wrap, e.g., integers.

F

The operations apply and curry are very similar to the original operations. In the

Denotation by Transformation 95

Next is an introductory section for the framework which is used to prove the
soundness of the transformations, Section 3.1. We define the transformation to
strict programs and show its soundness in Section 3.2. Section 3.3 contains the
definition of and the proof for the transformation to point-free style.

3.1 The Core Language and the Reference Semantics

Modern functional logic languages provide syntactic sugar to formulate very
concise and readable code. We consider the following core language:

P ::= {R} {program}
R ::= fn p1 . . . pn = e f ∈ OP {rule}
p ::= x x ∈ X {pattern variable}
| (cn p1 . . . pn) c ∈ CP , pi linear {complex pattern}

e ::= x x ∈ X {variable}
| sn s ∈ ΣP {symbol}
| (e1 e2) {application}

For our programs, we assume type correctness. In the following we abbreviate
application of the form (. . . (e1 e2) . . . en) by (e1 e2 . . . en). In correspondence
to applications we abbreviate tuples as if constructed by a left associative binary
operator, i.e., (x1, x2, . . . , xn) is short for (. . . (x1, x2), . . . , xn). Along the same
line of conventions, we also assume the binary operator / to be left associative.

We formulate the proofs in the so called CRWL setting for functional logic
programming languages [10]. This setting has been successfully used and ex-
panded in several publications. We take a selection of these extensions by a)
employing higher order in accordance with [11] b) preferring the variance called
CRWL+ allowing the replacement of function applications with ⊥ only [6, Sec-
tion 4.1] and c) choosing the simple and suggestive notation introduced in [18,
Figure 4]. To understand the proofs, the reader does not have to be familiar
with any of these papers. The complete semantics is given by the two rules of
Figure 1. The rules make use of context notation. A context C (with a hole) is
either a hole [] or one of the complex alternatives (C′ e) or (e C′) where e is an
expression and C′ a context. A context defines a mapping from expressions to
expressions, written as C[e] which is inductively defined by

[][e] = e (C e′)[e] = (C[e] e′) (e′ C)[e] = (e′ C[e])

The set of all contexts is denoted by Cntxt .

(B) C[(f e1 . . . en)] � C[⊥] C ∈ Cntxt , fn ∈ OP ∨ f = ⊥,
e1, . . . , en ∈ T (ΣP ∪ {⊥},X)

(OR) C[(f t1θ . . . tnθ)] � C[rθ] C ∈ Cntxt , f t1 . . . tn = e ∈ P, θ ∈ CSubst

Fig. 1. Rules of HOCRWL+ in Context Notation

9 and J. ChristiansenB. Braßel6

Whenever the program is not apparent, we write �P for a step with respect
to program P . By �∗ we denote the reflexive transitive closure of �. By [[e]]⊥

we denote the set {t | e �∗ t, t ∈ T (CP ∪ {⊥},X)} and we call each t in this set
a normal form. Note that by definition normal forms are constructor terms.

Rule B is used to model laziness. It allows the replacement of unneeded
expressions by ⊥.

3.2 Transformation to Strict Programs

We define a transformation str(·) of arbitrary lazy programs into strict programs
preserving its semantics. We achieve this by adding the possibility to abort the
evaluation of any function application non-deterministically. We get a strict pro-
gram by replacing each application (e1 e2) by a call to the higher order function
(app e1 e2). Function app takes two expressions and evaluates both to head nor-
mal form before applying the first to the second, see the rules of app below. As all
applications, including constructor applications, are replaced by app, the result-
ing program is strict. The non-deterministic abortion of evaluation is achieved
by adding an additional rule to each operation definition. The right hand side of
this rule contains only the new constructor symbol U0 (short for unevaluated).
The point is that unevaluated expressions can be non-deterministically replaced
by the new constructor U. In this sense, non-determinism is more general than
laziness. This fact can be used to obtain simple semantic approaches to func-
tional logic languages. The following transformation yields a strict functional
logic programs.

str(P) = {l = str(r) | l = r ∈ P} ∪ {f x1 . . . xn = U | fn ∈ OP }
∪ {app (s x1 . . . xn) (c y1 . . . ym) = (s x1 . . . xn) (c y1 . . . ym)
| si ∈ ΣP , i > n, cm ∈ CP ∪ {U}}

∪ {app U (c x1 . . . xn) = U | cn ∈ CP ∪ {U}, }

str(x) = x, x ∈ X str(s) = s, s ∈ ΣP str(e1 e2) = app str(e1) str(e2)

Transformation str(·) preserve semantics in the sense that programs resulting
from it yield the newly introduced constructor U instead of ⊥. All other values
are identical. Indeed, the way transformed programs work is very similar to the
behavior of the semantics of Figure 1. We prove this by stating three simple
observations which then allow us to formulate a very tight correspondence be-
tween the original program with lazy semantics and the transformed program
with strict semantics.

The first observation formalizes our claim that the resulting programs are
indeed strict. Recall that rule B of Figure 1 is responsible for modelling laziness.
Therefore strictness means the following: if rule B was used in a derivation
str(e) �∗

str(P) t of an expression e to a normal form t then t = ⊥. Equivalently
if there is a derivation str(e) �∗

str(P) t with t 6= ⊥ then rule B is not used in
this derivation. By � 6⊥ we denote a derivation without rule B, i.e., with rule
OR only and by [[e]] we denote the set {t | e �∗

6⊥ t, t ∈ T (CP ,X)}.

Denotation by Transformation 97

Proposition 1. [[str(e)]]⊥str(P) \ {⊥} = [[str(e)]]str(P)

Proof (Idea). Structural induction on C shows that str(C[e′]) � str(C[⊥]) �∗ t
implies t = ⊥.

We have seen that rule B is useless to derive any value but ⊥. On the other hand
it is worth noting that if we do not use that rule, strict application (app e1 e2)
is identical to standard application (e1 e2).

Proposition 2. (e1 e2) �∗
6⊥ v iff (app e1 e2) �∗

6⊥ v

Proof (Idea). For all e1, e2 6= ⊥ app e1 e2 is defined as (e1 e2)

We alter rule B slightly and replace it by the following rule B’. By �� we denote
the rewrite relation where all applications of B are replaced by proofs for B’.

(B’) C[(f t1 . . . tn)] �� C[⊥] C ∈ Cntxt , fn ∈ OP ∨ (n = 1 ∧ f = ⊥),
t1, . . . , tn ∈ T (CP ∪ {⊥},X)

The difference between the two rules is that applications can only be discarded
if its arguments are constructor terms (with ⊥) and that applications of ⊥ to
such terms have to be replaced by ⊥ one by one. It is easy to prove that the
relations defined by � and �� are identical.

Proposition 3. e �∗ t iff e ��∗ t

Proof (Idea). Before discarding the whole expression discard all sub terms.

The notation �6⊥ introduced above also excludes the use of variant B’. We are
now ready to prove the strong correspondence between the original program P
and the transformed program str(P).

Lemma 1. For all programs P and all expressions e ∈ ExprP holds e �∗
P t iff

str(e6⊥) �∗
str(P) t

6⊥ where 6⊥ replaces all occurences of ⊥ by U.

Proof. By Proposition 1 we may consider the derivation str(e6⊥) �∗
6⊥ str(P)t

6⊥

instead of str(e6⊥) �∗
str(P) t

6⊥. By Proposition 2 we may treat the appearances
of (app e1 e2) in the �∗

6⊥-derivation as (e1 e2). This means essentially that
str(e6⊥) �∗

6⊥str(P)t
6⊥ iff e 6⊥ �∗

6⊥ P ′t6⊥ where P ′ := P ∪ {f x1 . . . xn = U | fn ∈
OP }. Adding Proposition 3 this means we only need to show that e ��∗

P t iff
e 6⊥ �∗

6⊥ P ′ t6⊥. Between these derivations there is such a close correspondence
that there is a one-to-one mapping between them. We show this by induction
on the length n of both derivations.

The base case n= 0 holds trivially. For the induction we distinguish two cases:
Case 1: Rule B’ corresponds to one of the new rules.

C[f t1, . . . , tn] ��P C[⊥] iff
C[f t1, . . . , tn] 6⊥ = C[f t6⊥1 , . . . , t 6⊥n]6⊥ �6⊥P ′ C[U]6⊥ = C[⊥]6⊥

Case 2: Applications of the original rules are unchanged.
C[f t1θ, . . . , tnθ] ��P C[rθ] iff

C[f t1, . . . , tn] 6⊥ = C[f t1θ 6⊥, . . . , tnθ 6⊥]6⊥ � 6⊥P ′ C[rθ 6⊥]6⊥ = C[rθ]6⊥
Since with θ being a constructor substitution, also (· 6⊥) ◦ θ is in CSubst .

9 and J. ChristiansenB. Braßel8

3.3 Transformation to Point- ree Style

We use an intermediate transformation which yields programs that contain only
function definitions in first order style with the single exception of curry f x y

= apply (f,(x,y)), cf. the paragraph “Higher Order” in Section 2. We have
stated in the introduction that after transforming a program the only source
of non-determinism is the operation (?). Likewise, in uncurried programs all
higher order functions stem from curry. There is a simple transformation to
map functions defined with n patterns p1 . . . pn to functions with one argument
which is a tuple (p1, . . . , pn) employing the function pair curry and apply to
preserve higher order semantics. We have formalized such a transformation but
feel that the procedure is well known such that we present that transformation
in the technical report [5] only. Uncurried programs allow us to abstract from
the arity of all functions but the primitives we introduce.

In this section we present the general transformation of programs into point-
free style. First we introduce the notion of an interface of an expression. The
interface of an expression is an abstraction from its actual structure. An interface
is a tree with the same branching structure as the expression and this tree con-
tains the variables that occur in the expression. The mapping from expressions
to interfaces is defined as follows, where s ranges over symbols in ΣP :

int(s) = () int(x) = x int(s (e1, . . . , en)) = (int(e1), . . . , int(en))

This mapping is frequently used throughout the definition of the transformation.
We denote complex interfaces, i.e, those not in X ∪ {()} by i, i1, i2 . . . and by
var(i) the set of all variables occurring in i. For example, the interface of the
right hand side of the original definition of (<=>) in Example (9) is ((x, y), (x, y)).
The first use of interfaces is variable selection defined as follows:

sel(x, x) = id

sel(x, (i, i′)) =
{
fst * sel(x, i) , if x ∈ var(i) ∧ x 6∈ var(i′)
snd * sel(x, i′) , if x 6∈ var(i) ∧ x ∈ var(i′)

Each occurrence of the selected variable is passed on by id, while all other vari-
ables are discarded by fst and snd. Note that this definition requires that variable
x actually occurs in interface i. To get an intuition about what variable selection
is used for reconsider Example (16). The definition of head has been derived from
head (x:xs) = x whose uncurried version is head (Cons (x,xs)) = x. To finally
yield x we select x from the interface of Cons (x,xs) which simply is (x,xs). The
result is fst * id which can be simplified to fst.

The next lemma states in general that sel(x, i) selects the correct sub-term
of any substitution of interface i.

Lemma 2. For all interfaces i, θ ∈ CSubst and C ∈ Cntxt x ∈ var(i) implies
C[sel(x, i) iθ] �∗ C[xθ].

Proof (Idea). Structural induction on i.

F

Denotation by Transformation 99

On the basis of sel(x, i) we define the general approach to “Interface Adaption”,
cf. the paragraph of the same name in Section 2 as follows:

adapt(i, i′) =
{
id , if i = i′

adapt ′(i, i′) otherwise

adapt ′(i, ()) = unit

adapt ′(i, x) = sel(x, i)
adapt ′(i, (i1, i2)) = fork * (adapt(i, i1)/adapt(i, i2))

The effect of mapping adapt(·, ·) is twofold. First, an application of the map-
ping sel(·, ·) is introduced for every leaf of the interface adapted to. Second,
the incoming argument is copied as often as needed by employing the primitive
fork. For instance, for the definition of (<=>) in Example 9 the interface (x, y) is
adapted to ((x, y), (x, y)) and the result is fork * (id/id). This expression can be
shown to be equivalent to fork which is what one would expect for this example.

The next lemma states that mapping adapt(i, i′) indeed yields an interface
adaption from interface i to i′. More concretely, if adapt(i, i′) is applied to a
tuple of the form i the result is a tuple of form i′. Note that Lemma 3 requires
that the variables of the target interface are a subset of the variables of the
argument interface.

Lemma 3. For all interfaces i, i′ with var(i′) ⊆ var(i), all θ ∈ CSubst and all
contexts C: C[adapt(i, i′) iθ] �∗ C[i′θ]

Proof. By structural induction on i′.
Case 1 i = i′ :
C[adapt(i, i′) iθ] {def adapt(·, ·)}= C[id iθ] {def id}� C[iθ] = C[i′θ]

Case 2 i 6= i′ :
C[adapt(i, i′) iθ] {def adapt(·, ·)}= C[adapt ′(i, i′) iθ]

i′ = () :
C[adapt ′(i, ()) iθ] {def adapt ′(·, ·)}= C[unit iθ] {def unit}� C[()] = C[i′θ]

i′ = x :
C[adapt ′(i, i′) iθ] {def adapt ′(·, ·)}= C[sel(x, i) iθ] {Lemma 2}�∗ C[xθ]

i′ = (i1, i2) :
C[adapt ′(i, i′) iθ]

{ def adapt ′(·, ·) } = C[(fork * (adapt(i, i1)/adapt(i, i2))) iθ]
{ def * } � C[(adapt(i, i1)/adapt(i, i2)) (fork iθ)]
{ def fork } � C[(adapt(i, i1)/adapt(i, i2)) (iθ, iθ)]
{ def /} � C[(adapt(i, i1) iθ, adapt(i, i2) iθ)]
{ ind. hypothesis }�∗ C[(i1θ, i2θ)] = C[iθ]

The last missing step of interface adaption is to introduce extra variables by
function unknown, cf. the last paragraph of Section 2. We assume × to be a left
associative operator symbol. The required applications of unknown are introduced

·

and J. ChristiansenB. Braßel001

by the mapping addfree(·, ·), defined as follows:

addfree(i1, i2) = (free × . . .× free︸ ︷︷ ︸
n

×id) * adapt(i′1, i2)

where free = (unit * unknown)
i′1 = (x1, . . . , xn, i1)
{x1, . . . , xn} = var(i2) \ var(i1)
e× e′ = fork * (e/e′)

Proposition 4. For all interfaces i: C[((free × . . .× free︸ ︷︷ ︸
n

) i)] �∗ C[(x1, . . . , xn)]

where xk, xj 6∈ var(C[i]) and xk 6= xj for all k ∈ {1, . . . , n}.

Proof (Idea). Induction on n using the definitions of (/), unit and unknown.

The following lemma extends Lemma 3 by the introduction of extra variables.

Lemma 4. For all interfaces i1, i2, all substitutions θ and all contexts C:
C[addfree(i1, i2) i1θ] �∗ C[i2θ].

Proof (Idea). The proof connects Proposition 4 and Lemma 3.

The next step in the transformation to point-free programs is the transfor-
mation of expressions. Applications are replaced by the operator (*) and the
arguments are combined by (/). Higher order functions, i.e., single symbols (s)
are made values by using val. Expressions are translated as follows:

exp(s ()) = s
exp(s (e1, . . . , en>0)) = (exp(e1)/ . . . /exp(en)) * s
exp(s) = val(s)
exp(x) = id

The next lemma states that an application of exp(e) to the interface of e can be
reduced to the original expression.

Lemma 5. For all expressions e, θ ∈ CSubst and contexts C:
C[exp(e) int(e)θ] �∗ C[eθ].

Proof (Idea). Structural Induction on e.

Next we define the transformation of pattern matching to point-free style. The
mapping invert(·) is very similar to exp(·). All occurrences of constructors c are
replaced by the corresponding destructors invC.

invert(c ()) = invC
invert(c (e1, . . . , en>0)) = invC * (invert(e1)/ . . . /invert(en))
invert(x) = id

Furthermore the destructors invC are applied before the resulting arguments
are processed. The next lemma states that the application of invert(p) yields
the argument of a constructor if it matches the pattern and fails otherwise.

Denotation by Transformation 101

Lemma 6. Let p be a linear pattern, e a term and C a context.
If there exists a θ ∈ CSubst with e = pθ then C[invert(p) e] �∗ C[int(p)θ] and
otherwise [[C[invert(p) e]]] = ∅.
Proof. By induction on the structure of p.
p = x : C[invert(x) e] = C[id e] � C[e] = C[x{x 7→ e}] = C[int(x){x 7→ e}]
p = c(p1, . . . , pn) : C[invert(c(p1, . . . , pn)) e]
{ def invert(·) } = C[(invC * (invert(p1)/ . . . /invert(pn))) e]
{ def * } � C[(invert(p1)/ . . . /invert(pn)) (invC e)]
case 1 e = c(e1, . . . , en)
{ def invC } � C[((invert(p1)/ . . . /invert(pn)) (e1, . . . , en))]
{ def / } �∗ C[(invert(p1) e1, . . . , invert(pn) en)]
case 1.1 there exists a θ with e = pθ which implies e1 = p1θ ∧ . . . ∧ en = pnθ
{ ind. hypothesis }�∗ C[(int(p1)θ, . . . , int(pn)θ)]
{ θ ∈ CSubst } � C[(int(p1), . . . , int(pn))θ]
{ def int(·) } = C[int(p)θ]
case 1.2 ei and pi not unifiable for an i ∈ {1, . . . n}
By induction hypothesis (invert(pi) ei) is not reducible to a constructor normal
form. As all applications are strict this implies

[[C[(invert(p1)/ . . . /invert(pn)) (invC e)]]] = ∅
case 2 e 6= c(e1, . . . , en)
By definition (invC e) does not have a constructor normal form. As all applica-
tions are strict this implies [[C[(invert(p1)/ . . . /invert(pn)) (invC e)]]] = ∅
The general technique of the transformation of rules is: invert the pattern then
apply interface adaption and finally transform the body of the rule. The rules
of an operation are transformed as follows:

rule(f (p1, . . . , pn) = e) = (invert(p1)/ . . . /invert(pn)) * adp * exp(e)
where adp = addfree(int((p1, . . . , pn)), int(e))

The following lemma extents the pattern matching Lemma 6 to rules.

Lemma 7. Let p = (p1, . . . , pn) and f p = r be a rule in P. Let e1, . . . , en be
terms, e = (e1, . . . , en) and a = C[rule(f p = r) e].
If there exists θ ∈ CSubst with e = pθ, then a �∗ C[rθ] and otherwise [[a]] = ∅.
Proof (Idea). Unfold definition of rule(·) until Lemma 6 is applicable.

We can finally define how a whole program is transformed. The signature of the
resulting program P ′ is an extension of the original one. For every constructor
symbol c we introduce a new unary symbol invC, the corresponding destructor.

OP ′ = OP ∪ {invC1 | c1 ∈ CP } ∪ Prim
CP ′ = CP

Prim = {(*)3, (/)3, (?)3, fork1, id1, unit1, fst1, snd1, val2 curry2, apply1}

In the following definition prims are the operation definitions of (*) (4), (/)

(6), fork (8), unit (10), id (11), unknown (22), fst (12), snd (13), and (?) (17).

and J. ChristiansenB. Braßel01 2

Finally, we can put together the insights about the transformation.

Theorem 1. Let P be a program. Then [[P]]⊥6⊥ = [[prog(str(P))]].
Proof. By Lemma 1 we have that the semantics of str(P) is equivalent to the se-
mantics of P when replacing ⊥ with the special constructor U, i.e., [[str(P)]]⊥6⊥ =
[[P]]⊥6⊥. Also by Lemma 1 strict and lazy semantics for str(P) are equivalent,
i.e., [[str(P)]]⊥6⊥ = [[str(P)]]. We now prove that there is a derivation e �∗ t to a
normal form t in the program str(P) iff there is a derivation (exp (e) int(e)) �∗ t
in the transformed program prog(str(P)).

(⇒): By induction on the length n of the derivation e �∗ t.
n = 0: By Lemma 5 we have (exp (t) int(t)) �∗ t.
n+1 : The derivation is of the form C[f(p1, . . . , pn)θ] � C[rθ] �∗ t. By Lemma 7
the existence of θ yields C[rule(f(p1, . . . , pn) = r) (p1, . . . , pn)θ] �∗ C[rθ].
Therefore the induction hypothesis ensures the claim.

(⇐): By induction on the number n of applications of functions f ∈ OP (i.e.,
excluding the applications of primitives introduced by the transformation).
n = 0: By definition exp(e) contains exactly as many applications of functions
f ∈ OP as e. Naturally, the primitive functions do not apply functions of the
original program P . As the semantics is strict such that all functions in e will
actually be applied, n = 0 implies that e is a constructor term. Lemma 5 yields
therefore e = t and the derivation e �∗ e in P exists trivially.
n + 1 : By definition of the transformation prog all functions of the resulting
program but (?) have only a single rule. Therefore their application is the only
source of non-determinism. Moreover, (?) is only introduced to combine the
transformed rules of a function of the original program. Because of this and by
Lemma 7 derivations in the transformed program are always of the form
C[f pθ] � C[(r1 ? . . . ? rm) pθ] � C[ri pθ]

where fn ∈ OP , p = (x1, . . . , xn), i ∈ {1, . . . ,m} and ri = rule(f(p1, . . . , pn) =
ei).
By Lemma 7 the existence of a derivation to a normal form t implies that there
exists a constructor substitution σ with pθ = (p1, . . . , pn)σ and that the deriva-
tion above can be continued as:
C[ri (p1, . . . , pn)σ] �∗ C[eiσ] �∗ t

By induction hypothesis we may assume that there exists a derivation D corre-
sponding to C[eiσ] �∗ t. And, all in all, we can construct the following corre-
sponding derivation in the original program:
C[f(p1, . . . , pn)σ] � C[eiσ] �∗ t︸ ︷︷ ︸

D

4 Related and Future Work

Cunha, Pinto and Proença [8, 7] present a framework for transformations of
functional programs into point-free style. They implemented a library for point-
free programming in Haskell and transform Haskell programs into point-free

op(f) = f = rule(r1) ? . . . ? rule(rn) where {r1, . . . , rn} = {f p = r ∈ P}
prog(P) = prims ∪ {op(f) | f ∈ OP } ∪ {invC (c x) = x | c ∈ CP } ·

Denotation by Transformation 103

transforms a subset of Haskell to a simply-typed λ-calculus, and back to a Haskell
program. Because of the intermediate transformation to λ-calculus, the resulting
programs bear only a remote resemblance to the original. In contrast, one of
our aims is to keep the resulting programs close to the original. For example,
we preserve the recursive structure of the program instead of expressing it by
primitive recursion operators and we keep the data types and definitions of the
original program instead of transforming them into generic sum and product
types.

There is a lot of work to employ category theory in order to enable the
algebraic manipulation of functional programs from which we only mention [3].
We have the intuition that the framework of functional logic languages is an even
more natural and promising field for this style of reasoning about programs. The
elementary difference is the existence of non-determinism. Whereas in [3] and
similar works every inversion and every non-deterministic definition resulting
from inversion must be eliminated, the framework of functional logic languages
allows much less restricted use of algebraic methods.

As mentioned in the introduction we aim at using automatic proving like
presented in [15] to prove for example the correctness of transformations. Fur-
thermore we hope that the well-known area of relation algebra provides new
insights into functional logic programming.

[20] presents a semantics for a functional language employing relation algebra.
We want to investigate the relation with our approach as future work.

One of our future goals is to extent the presented approach to cover function
patterns [1] for the first time. Function patterns allow operator definitions with
arbitrary first order patterns. There seems to be a close correlation between func-
tion patterns and the inversion operator of relation algebra. The use of function
patterns allows to generate even simpler point-free programs than presented here.
Function patterns can be used to express arbitrary pattern matching by invert-
ing the corresponding expression. Furthermore by employing function patterns
we could decrease the number of primitives introduced by the transformation.
For example, we could define unknown as the inversion of unit.

References

programs which are based on this library. Conceptually, their approach first

1. Antoy, S., Hanus, M.: Declarative programming with function patterns. In: Hill,
P.M. (ed.) LOPSTR 2005. LNCS, vol. 3901, pp. 6–22. Springer, Heidelberg (2006)

2. Backus, J.: Can programming be liberated from the von Neumann style? A func-
tional style and its algebra of programs. Com. ACM 21(8), 613–641 (1978)

3. Bird, R., de Moor, O.: Algebra of programming. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA (1997)

4. Braßel, B.,Christiansen,J.: A Relation Algebraic Semantics for a Lazy Functional
Logic Language. In: Submitted to the 10th International Conference on Relational
Methods in Computer Science (RelMiCS 10),
http://www.informatik.uni-kiel.de/prog/mitarbeiter/bernd-brassel/
publications/

and J. ChristiansenB. Braßel01 4

5.
denotational semantics by transformation to point-free style. Technical report no.
0711, Christian-Albrechts-University of Kiel (2007)

6. Cleva, J.M., Leach, J., López-Fraguas, F.J.: A logic programming approach to the
verification of functional-logic programs. In: Moggi, E., Warren, D.S. (eds.) PPDP,
pp. 9–19. ACM Press, New York (2004)

7. Cunha, A.: Point-free program calculation. PhD thesis, Universidade do Minho,
Departamento de Informática (2005)

8. Cunha, A., Sousa Pinto, J., Proença, J.: A Framework for Point-Free Program
Transformation. In: Butterfield, A., Grelck, C., Huch, F. (eds.) IFL 2005. LNCS,
vol. 4015, pp. 1–18. Springer, Heidelberg (2006)

9. Fay, M.J.: First-order unification in an equational theory. In: Proc. 4th Workshop
on Automated Deduction, Austin (Texas), pp. 161–167. Academic Press, London
(1979)

10. González-Moreno, J.C., Hortalá-González, M.T., López-Fraguas, F.J., Rodŕıguez-
Artalejo, M.: An approach to declarative programming based on a rewriting logic.
Journal of Logic Programming 40, 47–87 (1999)

11. González-Moreno, J.C., Hortalá-González, M.T., Rodŕıguez-Artalejo, M.: A higher
order rewriting logic for functional logic programming. In: Proc. of the Fourteenth
International Conference on Logic Programming (ICLP 1997), pp. 153–167. MIT
Press, Cambridge (1997)

12. Hanus, M.: The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming 19&20, 583–628 (1994)

13. Hanus, M.: A unified computation model for functional and logic programming.
In: Proc. of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pp. 80–93 (1997)

14. Hanus, M. (ed.): Curry: An integrated functional logic language (vers. 0.8.2) (2006),
http://www.informatik.uni-kiel.de/∼curry

15. Höfner, P., Struth, G.: Automated reasoning in kleene algebra. In: Pfenning, F.
(ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 279–294. Springer, Heidelberg
(2007)

16. Hu, Z., Iwasaki, H., Takeichi, M.: Deriving structural hylomorphisms from recursive
definitions. In: ICFP, pp. 73–82 (1996)

17. López-Fraguas, F., Sánchez-Hernández, J.: TOY: A multiparadigm declarative sys-
tem. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp.
244–247. Springer, Heidelberg (1999)

18. López-Fraguas, F.J., Rodŕıguez-Hortalá, J., Sánchez-Hernández, J.: A simple
rewrite notion for call-time choice semantics. In: Proceedings of the 9th ACM
SIGPLAN International Conference on Principles and Practice of Declarative Pro-
gramming (PPDP 2007), pp. 197–208. ACM Press, New York (2007)

19. Schmidt, G., Ströhlein, T.: Relations and Graphs - Discrete Mathematics for
Computer Scientists. In: EATCS Monographs on Theoretical Computer Science,
Springer, Heidelberg (1993)

20. Zierer, H.: Programmierung mit Funktionsobjekten: Konstruktive Erzeugung se-
mantischer Bereiche und Anwendung auf die partielle Auswertung. PhD thesis,
Technische Universität München, Fakultät für Informatik (1988)

Braßel, B., Christiansen, J.: Denotation by transformation - towards obtaining a

Denotation by Transformation 105

Generation of Rule-Based Constraint Solvers:

Combined Approach

Slim Abdennadher and Ingi Sobhi

Computer Science Department, German University in Cairo
{slim.abdennadher,ingi.sobhi}@guc.edu.eg

http://www.cs.guc.edu.eg

Abstract. Inductive Constraint Solving is a subfield of inductive ma-
chine learning concerned with the automatic generation of rule-based
constraint solvers. In this paper, we propose an approach to generate
constraint solvers given the definition of the constraints that combines
the advantages of generation by construction with generation by testing.
In our proposed approach, semantically valid rules are constructed sym-
bolically, then the constructed rules are used to prune the search tree of
a generate and test method. The combined approach leads in general to
more expressive and efficient constraint solvers. The generated rules are
implemented in the language Constraint Handling Rules.

1 Introduction

In rule-based constraint solving, the execution of constraints consists of a re-
peated application of rules. In general, we distinguish between two types of
rules:

– Simplification rules that rewrite constraints to simpler constraints while pre-
serving logical equivalence (e.g. min(A, A, C) ⇔ C=A).

– Propagation rules that add new constraints, which are logically redundant
but may cause further simplification (e.g. min(A, B, C) ⇒ C≤A ∧ C≤B).

Writing rule-based constraint solvers is a hard task as the programmer has to
determine the propagation algorithms. Several methods have been proposed in
the field of inductive constraint solving to automate the generation of constraint
solvers for constraints defined extensionally over finite domains by means of a
truth table [5,9,2] or intentionally over infinite domains by means of a constraint
logic program (CLP) [3,4]. In general, the algorithms follow a generate and
test approach. Rule candidates are enumerated and subjected to a validity test
against the definition of the constraint.

In this paper, we present a joined approach that combines the generate and
test method presented in [3] with a symbolic construction method [10]. Each
method has its advantages and drawbacks. The construction method is an or-
thogonal approach to the general direction of the work done in the field. While
it is able to generate recursive rules that cannot be generated by the generate

King, A. (Ed.): LOPSTR 2007, LNCS 4915, pp. 106–120, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Generation of Rule-Based Constraint Solvers: Combined Approach 107

and test method, it is likely to cover a narrower spectrum of rules. The generate
and test method on the other hand generates a more exhaustive set of rules,
however this does come at a cost. Our aim is to combine the advantages of the
two approaches, while minimizing the drawbacks.

In our combined approach, we first construct semantically valid rules symboli-
cally. Then, we use the constructed rules to prune the search tree of the generate
and test method. This will generally lead to more powerful and expressive con-
straint solvers at a reduced cost.

In the following, we will illustrate the combined approach by an example.

Example 1. Given the following CLP program defining min(A, B, C) that holds
if C is the minimum of A and B.

min(A, B, C) ← A≤B ∧ C=A.

min(A, B, C) ← A>B ∧ C=B.

The combined approach will construct rules symbolically.

Symbolic Construction. The basic idea of the symbolic construction method
stems from the observation that in general, the execution of one clause in a
CLP program excludes the execution of all other clauses. Thus, to construct a
simplification rule that replaces the head of a clause by the body of the clause
while preserving the semantics of the CLP program, the construction algorithm
adds to the head of the rule the negation of the bodies of all the other clauses.
The negation of the bodies of clauses may result in a disjunction of constraints,
thus for each clause a set of rules might be generated. Note that constraints
that are added to the head of the rule are also added to its body to ensure that
constraints removed unnecessarily are added again.

The construction algorithm generates the following simplification rules:

min(A, B, C) ∧ A≤B ⇔ A≤B ∧ C=A.

min(A, B, C) ∧ C
=B ⇔ A≤B ∧ C=A ∧ C
=B.

min(A, B, C) ∧ A>B ⇔ A>B ∧ C=B.

min(A, B, C) ∧ C
=A ⇔ A>B ∧ C=B ∧ C
=A.

To generate a simplification rule that replaces the head of the first clause with
the body of the clause, the construction algorithm negates the bodies of all other
clauses (i.e. second clause) to add to the head of the rule. The negation of the
body of the second clause gives A≤B ∨ C
=B, a disjunction of constraints.
This results in two separate rules (first and second rule), one for each disjunct.
Similarly, the last two rules are generated from the second clause.

Then the combined approach will eliminate the above constructed rules from
the search tree of the generate and test algorithm. The generate and test algo-
rithm used is the one proposed in [4].

Generate and Test. All possible candidate constraints for the left hand side
C of the rule and right hand side D of the rule are generated and tested based

108 S. Abdennadher and I. Sobhi

on the observation that a rule of the form C ⇒ D is valid if the execution of the
goal C ∧ ¬(D) finitely fails with respect to the definition.

The generate and test algorithm will add the following rules to the constraint
solver:

min(A, B, C) ⇒ C≤A ∧ C≤B.

min(A, B, C) ∧ B≤A ⇔ B≤A ∧ C=B.

The propagation rule (first rule) is generated by calling the CLP system to
execute the goal min(A, B, C) ∧ C>A ∧ C>B that fails.

The generated solvers are implemented in the language Constraint Handling
Rules (CHR) [8].

The paper is organized as follows. The generate and test algorithm of [4] is
summarized in Section 2. In Section 3, we present the construction algorithm.
Then in Section 4, we present the combined approach. Finally, we conclude in
Section 5 with a summary and future work.

2 Generate and Test Method

In this section, we summarize the generate and test algorithm that we use for the
combined approach and which is given in [4]. The algorithm requires as input a
CLP program defining the user-defined constraint for which the solver is needed.

Definition 1. A CLP program is a finite set of CLP clauses. A CLP clause is
a rule of the form H ← B1 ∧ . . . ∧ Bn ∧ C1 ∧ . . . ∧ Cm where H, B1, . . . , Bn are
atoms and C1, . . . , Cm are built-in constraints. H is called the head of the clause
and B1∧ . . .∧Bn ∧C1∧ . . .∧Cm is called the body of the clause. A user-defined
constraint is defined in a CLP program if it occurs in the head of the clause.

The algorithm also requires the following sets which specify the syntactic form
of the generated rules of the solver:

– A set of built-in and user-defined constraints denoted by Baselhs. These
constraints are the common part that must appear in the left hand side
(lhs) of all rules.

– A set of built-in and user-defined constraints denoted by Candlhs. These are
the candidate constraints to be used in conjunction with the Baselhs to form
the lhs of a rule.

– A set containing built-in constraints denoted by Candrhs. These are the
candidate constraints that may appear in the right hand side (rhs) of a rule.
This set can be expanded to contain user-defined constraints.

Example 2. To generate a constraint solver for min constraint of Example 1, the
algorithm takes as input the CLP program defining the constraint, as well as,
the following sets:

Generation of Rule-Based Constraint Solvers: Combined Approach 109

Baselhs = {min(A, B, C)}
Candlhs = {A=B, A=C, B=C, A
=B, A
=C, B
=C,

A≤B, A≤C, B≤A, B≤C, C≤A, C≤B}
Candrhs = Candlhs

Example 3. To generate a constraint solver for append(A, B, C) that holds if
list C is the concatenation of lists A and B, the algorithm takes as input the
following CLP program:

append(A, B, C) ← A=[] ∧ C=B.

append(A, B, C) ← A=[D|E] ∧ C=[F |G] ∧ D=F ∧ append(E, B, G).

As well as, the following sets:

Baselhs = {append(A, B, C)}
Candlhs = {A=[], B=[], C=[], A=B, A=C, B=C, A
=B, A
=C, B
=C,

A
=[], B
=[], C
=[]}
Candrhs = Candlhs

Given the specified input parameters, candidate propagation rules are generated
of the form C ⇒ D, where C the lhs of the rule is a subset of Baselhs∪Candlhs,
and D the rhs of the rule is a subset of Candrhs. The candidate rules are then
subjected to a validity test as follows:

– For primitive propagation rules (i.e. rules with rhs consisting of only built-in
constraints), the validity test is based on the observation that a rule of the
form C ⇒ D is valid if the execution of the goal C ∧¬(D) finitely fails with
respect to the given CLP program and the predefined solver for the built-in
constraints.

– For general propagation rules (i.e. rules with rhs consisting of both built-in
and user-defined constraints) to avoid the problems relating to the negation
of user-defined constraints, a different validity test is proposed where the
negation is performed on the set of answers to a goal (set of constraints)
rather than on the constraints themselves.

For the execution of the goals, a bounded depth tabled resolution [6,7] for CLP is
used to avoid non-termination. The intuitive basic principle of tabled resolution
is the following: each new subgoal S is compared to the previous intermediate
subgoals (not necessarily in the same branch of the resolution tree). If there is
a previous subgoal I which is equivalent to S or more general than S, then no
more unfolding is performed on S and answers for S are selected among the
answers of I. This process is repeated for all subsequent computed answers that
correspond to the subgoal I.

Example 4. Consider the following primitive propagation rule which is generated
by the algorithm for the append constraint:

append(A, B, C) ∧ B=[] ⇒ A=C.

110 S. Abdennadher and I. Sobhi

The validity test for the rule is determined from the execution of the goal
append(A, B, C) ∧ B=[] ∧ A
=C. Using a classical CLP resolution scheme, the
goal will lead to an infinite derivation tree, whereas in the case of a tabled reso-
lution, the execution of the goal will fail as shown by the derivation tree below:

append(A,B, C) ∧ B=[] ∧ A �=C

���������
���

������������������

A=[] ∧ B=C ∧ B=[] ∧ A �=C

��

A=[D|E] ∧ C=[D|G] ∧ append(E,B, G) ∧ B=[] ∧ A �=C

��
false false

The initial goal G1 = (append(A, B, C) ∧ B=[] ∧ A
=C) is more general than
the subgoal G2 = (A=[D|E] ∧ C=[D|G] ∧ append(E, B, G) ∧ B=[] ∧ A
=C),
in the sense that (append(X, Y, Z) ∧ U=[W |X] ∧ V =[W |Z] ∧ Y =[] ∧ U
=V)
entails (append(X, Y, Z) ∧ Y =[] ∧ X
=Z). So no unfolding is made on G2, and
the process waits for answers of G1 to compute answers of G2. Since G1 has no
further possibility of having answers, then G2 fails and thus G1 also fails.

Since a propagation rule does not remove constraints but adds new ones, the
constraint store may contain superfluous information. To improve the time and
space behavior of constraint solving, propagation rules should be transformed
into equivalent simplification rules. For some of the automatically generated
propagation rules a transformation to simplification rules is possible. For a valid
propagation rule of the form C ⇒ D, if a proper subset E of C can be found
such that D ∪E ⇒ C is valid too then the propagation rule can be transformed
to a simplification rule of the form C ⇔ D ∪ E.

Example 5. For the min constraint of Example 1, the generate and test algo-
rithm generates the following valid rules:

min(A, B, C) ⇒ C≤A ∧ C≤B. (1)
min(A, B, C) ∧ C
=A ⇔ C=B ∧ C
=A. (2)
min(A, B, C) ∧ C
=B ⇔ C=A ∧ C
=B. (3)
min(A, B, C) ∧ A≤B ⇔ C=A ∧ A≤B. (4)
min(A, B, C) ∧ B≤A ⇔ C=B ∧ B≤A. (5)

The set of generated rules is complete, i.e. it propagates all built-in constraints
(equalities and inequalities) that logically follow from the min constraint defini-
tion and some given equalities or inequalities.

Example 6. For the append constraint of Example 3, the generate and test al-
gorithm generates among others the following valid rules:

append(A, B, C) ∧ A=[] ⇔ A=[] ∧ B=C.

append(A, B, C) ∧ B=[] ⇔ A=C ∧ B=[].
append(A, B, C) ∧ C=[] ⇔ A=[] ∧ B=[] ∧ C=[].

Generation of Rule-Based Constraint Solvers: Combined Approach 111

append(A, B, C) ∧ A=C ⇔ B=[] ∧ A=C.

append(A, B, C) ∧ A
=[] ⇒ C
=[].
append(A, B, C) ∧ B
=[] ⇒ A
=C ∧ C
=[].

The rules handle only special cases, where equality or inequality constraints are
checked between the arguments of the constraint and the empty list. The solver
is incomplete due to the absence of recursive rules that are able to handle more
general cases.

3 Symbolic Construction Method

In this section, we present an algorithm that constructs simplification rules sym-
bolically for a constraint H defined by a CLP program, as follows:

H ← C1, H ← C2, . . . , H ← Cn.

where Ci is a conjunction of constraints, n is the total number of clauses and
the clauses are non-overlapping (i.e. in a computation at most one clause can be
chosen for a goal). Note that any overlapping CLP program can be transformed
into an equivalent non-overlapping one.

The algorithm is presented in Figure 1. The basic idea of the algorithm stems
from the observation that in general, the execution of one clause in a CLP
program excludes the execution of all other clauses. Thus, to construct a valid
simplification rule that simplifies the constraint H to Ci (the body of the ith
clause), the negation of the bodies of all other clauses is added to the head of the
rule to ensure that the rule will only be applicable if the bodies of all the other
clauses are not. This is needed to preserve the semantics of the CLP program
defining the constraint.

The algorithm works as follows. For each clause H ← Ci in the CLP program,
it constructs the simplification rule(s) by:

– Setting the head of the rule to H .
– Setting the body of the rule to Ci.
– Adding to the head of the rule Gj

i ; a disjunct from Gi, the expression result-
ing from negating the bodies of all the CLP clauses excluding Ci.

– Adding to the body of the rule Gj
i . This is done to ensure that constraints

removed unnecessarily from the constraint store are added again.

The constructed simplification rules are of the form:

H ∧ Gj
i ⇔ Ci ∧ Gj

i 1≤j≤mi, 1≤i≤n

where Gj
i is a conjunction of built-in constraints from Gi and mi is the number

of disjuncts Gj
i in Gi.

Determination of Gi. Given a clause H ← Ci, the expression Gi is formally
determined as follows:

112 S. Abdennadher and I. Sobhi

begin
H : the head of the clauses.
B: the set of clause bodies.
R: the set of resultant simplification rules initialized to [].

while B is not empty do
Remove from B its first element denoted Ci.
OtherB : the set of all clause bodies except Ci.
Gi: the set resulting from negating OtherB .
while Gi is not empty do

Remove from Gi its first element denoted Gj
i .

Add rule (H ∧ Gj
i ⇔ Ci ∧ Gj

i) to R.
end while

end while
end

Fig. 1. The Symbolic Construction Algorithm

– Negate the bodies of all clauses of the CLP program except the body Ci:

¬ (C1 ∨ . . . ∨ Ci−1 ∨ Ci+1 ∨ . . . ∨ Cn)

– Distribute the negation:

¬C1 ∧ . . . ∧ ¬Ci−1 ∧ ¬Ci+1 ∧ . . . ∧ ¬Cn

Since Ci is a conjunction of constraints, this expands to:

¬
(

c1
1 ∧ . . . ∧ ck1

1

)

∧ . . . ∧ ¬
(

c1
(i−1) ∧ . . . ∧ c

k(i−1)

(i−1)

)

∧

¬
(

c1
(i+1) ∧ . . . ∧ c

k(i+1)

(i+1)

)

∧ . . . ∧ ¬
(

c1
n ∧ . . . ∧ ckn

n

)

where ki denotes the number of constraints in a body Ci.
– Push the negation into the conjunctions. This transforms the conjunctions

of constraints to disjunctions of negated constraints:
(

¬c1
1 ∨ . . . ∨ ¬ck1

1

)

∧ . . . ∧
(

¬c1
(i−1) ∨ . . . ∨ ¬c

k(i−1)

(i−1)

)

∧
(

¬c1
(i+1) ∨ . . . ∨ ¬c

k(i+1)

(i+1)

)

∧ . . . ∧
(

¬c1
n ∨ . . . ∨ ¬ckn

n

)

– Replace each negated constraint ¬cd
q by a corresponding simplified positive

constraint. The algorithm distinguishes between two cases:
• If cd

q is a built-in constraint, the algorithm replaces ¬cd
q by its correspond-

ing positive constraint after simplification. The set of built-in constraints
is assumed to be closed under negation. For obtained constraints that
consist of local variables (i.e. variables that do not occur in H), the al-
gorithm adds the built-in constraints (in their positive form) from the
body Cq that define the local variables.

Generation of Rule-Based Constraint Solvers: Combined Approach 113

• Otherwise, cd
q is a user-defined constraint and since the negation of user-

defined constraints is still not well-defined, the algorithm discards ¬cd
q

(i.e. no rules will be constructed for this case).
This results in a formula of the form:

(

P 1
1 ∨ . . . ∨ P l1

1

)

∧ . . . ∧
(

P 1
(i−1) ∨ . . . ∨ P

l(i−1)

(i−1)

)

∧
(

P 1
(i+1) ∨ . . . ∨ P

l(i+1)

(i+1)

)

∧ . . . ∧
(

P 1
n ∨ . . . ∨ P ln

n

)

where P e
i is a built-in constraint or a conjunction of built-in constraints and

li denotes the number of built-in constraints in a disjunct Ci.
– Distribute the conjunction over the disjunction:

(

P 1
1 ∧ . . . ∧ P 1

(i−1) ∧ P 1
(i+1) ∧ . . . ∧ P 1

n

)

∨ . . . ∨
(

P l1
1 ∧ . . . ∧ P

l(i−1)

(i−1) ∧ P
l(i+1)

(i+1) ∧ . . . ∧ P ln
n

)

This results in Gi, which is a formula in disjunctive normal form G1
i ∨ . . . ∨

Gmi

i , where Gj
i is a conjunction of built-in constraints.

Example 7. Given the CLP program for the append of Example 3:

append(A, B, C) ← A=[] ∧ C=B.

append(A, B, C) ← A=[D|E] ∧ C=[F |G] ∧ D=F ∧ append(E, B, G).

The symbolic construction algorithm will construct rules for the first clause
by setting the head of the rules to append(A, B, C) and the body of the rules
to the body of the clause, A=[] ∧ C=B. It then determines G1, the expression
resulting from negating the bodies of all other clauses as follows:

– Negate the body of the second clause:

¬(A=[D|E] ∧ C=[F |G] ∧ D=F ∧ append(E, B, G))

– Distribute the negation:

¬(A=[D|E]) ∨ ¬(C=[F |G]) ∨ ¬(D=F) ∨ ¬(append(E, B, G))

– Given that the equality constraint is a built-in constraint defined by a con-
straint theory and for which a solver is available, the algorithm performs the
following operations:
• It replaces ¬(A=[D|E]) and ¬(C=[F |G]) by A
=[D|E] and C
=[F |G]

which will be simplified by the built-in solver to A=[] and C=[], respec-
tively.

• It replaces ¬(D=F) by D
=F . Since D and F are local variables, the
built-in constraints A=[D|E] and C=[F |G] that define the local variables
to be the first elements of the lists A and C are added.

– Negated user-defined constraint ¬(append(E, B, G)) is discarded.

114 S. Abdennadher and I. Sobhi

This results in

A=[] ∨ C=[] ∨ (D
=F ∧ A=[D|E] ∧ C=[F |G])

and the following three simplification rules are constructed:

append(A, B, C) ∧ A=[] ⇔ A=[] ∧ C=B.

append(A, B, C) ∧ C=[] ⇔ A=[] ∧ C=B ∧ C=[].

append(A, B, C) ∧ D
=F ∧ A=[D|E] ∧ C=[F |G] ⇔ A=[] ∧ C=B ∧

D
=F ∧ A=[D|E] ∧ C=[F |G].

Similarly, the following simplification rules are constructed for the second
clause:

append(A, B, C) ∧ A
=[] ⇔ A=[D|E] ∧ C=[F |G] ∧ D=F ∧

append(E, B, G) ∧ A
=[].

append(A, B, C) ∧ C
=B ⇔ A=[D|E] ∧ C=[F |G] ∧ D=F ∧

append(E, B, G) ∧ C
=B.

The rules are recursive. The power of the symbolic construction algorithm is in
the generation of such recursive rules given a recursive constraint definition.

Simplification. In general, the simplification rules constructed are not in the
simplest form. To simplify the constructed rules, the head and body of the rules
are executed against the solvers for the built-in constraints.

Example 8. Consider the following constructed rule for append:

append(A, B, C) ∧ D
=F ∧ A=[D|E] ∧ C=[F |G] ⇔ A=[] ∧ C=B ∧

D
=F ∧ A=[D|E] ∧ C=[F |G].

Since the existence of the constraints A=[] and A = [D|E] leads to a contradic-
tion, the rule will be simplified to :

append(A, B, C) ∧ D
=F ∧ A=[D|E] ∧ C=[F |G] ⇔ false.

Redundancy. In general, the generated rules may contain redundant rules. To
remove redundant rules, the same algorithm is used as the one summarized in the
redundancy pruning in Section 4, which basically states that a rule is redundant
and should be removed if its operation is covered by the remaining rules of the
solver.

Generation of Rule-Based Constraint Solvers: Combined Approach 115

Example 9. Consider the following two rules of the constructed solver for append:

append(A, B, C) ∧ D
=F ∧ A=[D|E] ∧ C=[F |G] ⇔ false.

append(A, B, C) ∧ A
=[] ⇔ A=[D|E] ∧ C=[F |G] ∧ D=F ∧

append(E, B, G).

The first rule is redundant and can be removed since removing it and executing
the goal append(A, B, C) ∧ D
=F ∧ A=[D|E] ∧ C=[F |G] on the remaining
rules, the second rule will be fired and leads to a contradiction.

Example 10. For the append of Example 3, the simplification rules reduce to the
following set:

append(A, B, C) ∧ A=[] ⇔ C=B ∧ A=[].

append(A, B, C) ∧ C=[] ⇔ C=B ∧ A=[] ∧ C=[].

append(A, B, C) ∧ A
=[] ⇔ A=[D|E] ∧ C=[F |G] ∧ D=F ∧

append(E, B, G).

append(A, B, C) ∧ C
=B ⇔ A=[D|E] ∧ C=[F |G] ∧ D=F ∧

append(E, B, G) ∧ C
=B.

The rules cover some of the cases, where list A is empty (first and second
rules), as well as, when it consists of at least one element (third and fourth
rules). In the latter case, the simplification rule is called recursively on each of the
elements of list A. However, it should be noted that the solver is not propagation
complete, i.e. it does not produce all built-in constraints that logically follows
from the constraint definition such as that the list B is empty if it is known that
the lists A and C are equal.

Recursive Rules. The power of the symbolic construction approach is its abil-
ity to generate recursive rules which cannot be generated by other approaches.

Example 11. Consider the following CLP program that defines the constraint
replace(A, B, C, D) that holds if list D is the result of replacing all occurrences
of A in list C by B.

replace(A, B, C, D) ← C=[] ∧ D=[].

replace(A, B, C, D) ← C=[E|F] ∧ D=[G|H] ∧ E=A ∧ G=B ∧

replace(A, B, F, H).

replace(A, B, C, D) ← C=[E|F] ∧ D=[G|H] ∧ E
=A ∧ G=E ∧

replace(A, B, F, H).

116 S. Abdennadher and I. Sobhi

The symbolic construction algorithm will generate the following simplification
rules:

replace(A, B, C, D) ∧ C=[] ⇔ C=[] ∧ D=[].

replace(A, B, C, D) ∧ D=[] ⇔ C=[] ∧ D=[].

replace(A, B, C, D) ∧ C=[E|F] ∧ E=A ⇔ C=[E|F] ∧ D=[G|H] ∧
E=A ∧ G=B ∧ replace(A, B, F, H).

replace(A, B, C, D) ∧ C=[E|F] ∧ E
=A ⇔ C=[E|F] ∧ D=[G|H] ∧
G=E ∧ E
=A ∧ replace(A, B, F, H).

replace(A, B, C, D) ∧ D=[G|H] ∧ G
=B ⇔ C=[E|F] ∧ D=[G|H] ∧
G=E ∧ E
=A ∧ G
=B ∧ replace(A, B, F, H).

replace(A, B, C, D) ∧ C=[E|F] ∧ D=[G|H] ∧ G
=E ⇔ C=[E|F] ∧
D=[G|H] ∧ E=A ∧ G=B ∧ G
=E ∧ replace(A, B, F, H).

The symbolic construction algorithm constructs the rules by direct derivation
from the definition. The first two rules apply when the lists are empty. The
last four rules apply when information is known about either of the leading list
elements E or G or when the relationship between them is sufficiently known.
The rules do not cover all possibilities, however they represent a good basis for
a constraint solver for replace(A, B, C, D).

4 Combined Approach

Both the symbolic construction method and the generate and test method have
advantages and disadvantages. The symbolic construction method is able to gen-
erate recursive rules where all other approaches based on generation and testing
failed. However, the generate and test, in general, generates a more exhaustive
set of rules.

In this section, we will present a combination of the symbolic construction
method and the generate and test method that will lead to more powerful and
expressive constraint solvers at a reduced cost of generation.

We will first construct semantically valid rules using the symbolic construction
method then we will use the generated rules to prune the search tree of the
generate and test method using the closure pruning technique. However, even
with this pruning technique, the combined approach generates redundant rules
that should be removed. This will be done using the second pruning technique.

1. Closure Pruning: If a rule of the form C ⇔ D is generated using the symbolic
construction algorithm then in the generate and test method there is no need
to consider rules where the lhs constraint is C. Thus, during the enumeration
of all possible rule lhs, unnecessary lhs candidates are removed from this list.
For efficiency reasons, the concrete implementation is not based on a list but
on a tree containing lhs candidates on its nodes.

Generation of Rule-Based Constraint Solvers: Combined Approach 117

2. Redundancy Pruning: To suppress the generation of redundant rules, we
use the algorithm proposed in [1]. The idea of the algorithm is based on
operational equivalence of programs. The operational equivalence test for
redundancy removal is to check if the computation step due to the candidate
rule that is tested for redundancy can be performed by the remainder of the
program. This is done by executing the prefix of the candidate rule in both
programs and comparing the results. If the results are identical, then the
rule is obviously redundant and can be removed.
A redundant rule is defined formally as follows:

Definition 2. A rule R is redundant in a program P if and only if for all
states S: If S �→∗

P S1 then S �→∗
P\{R} S2, where S1 and S2 are final states

and are identical upto renaming of variables and logical equivalence of built-
in constraints. �→∗

P denotes the reflexive and transitive closure of �→P .

The redundancy pruning technique is non-deterministic since the resulting
solver may vary depending on the order in which rules are tried and removed.

Example 12. For the min constraint of Example 1, the symbolic construction
method generates the following rules:

min(A, B, C) ∧ A≤B ⇔ A≤B ∧ C=A. (6)
min(A, B, C) ∧ C
=B ⇔ A≤B ∧ C=A ∧ C
=B. (7)
min(A, B, C) ∧ A>B ⇔ A>B ∧ C=B. (8)
min(A, B, C) ∧ C
=A ⇔ A>B ∧ C=B ∧ C
=A. (9)

The generate and test algorithm will first generate the propagation rule
(Rule 1). Using the closure pruning technique, Rules 2, 3, and 4 are not checked.
Rule 5 will be generated since there is no rule that checks for B ≤ A. Combin-
ing both sets of rules, Rule 8 will be eliminated using the redundancy pruning
technique since it is covered by Rule 5. The combined approach generates the
same rules as the ones generated using the generate and test method however
less candidate rules are checked.

In general, the set of rules generated using the combined approach is more ex-
pressive and powerful than the ones generated either using the generate and test
method or using the symbolic construction method as illustrated in the following
example.

Example 13. For the append constraint, the combined approach generates the
following rules using the symbolic construction method:

append(A, B, C) ∧ A=[] ⇔ C=B ∧ A=[].

append(A, B, C) ∧ C=[] ⇔ C=B ∧ A=[] ∧ C=[].

append(A, B, C) ∧ A
=[] ⇔ A=[D|E] ∧ C=[F |G] ∧ D=F ∧

append(E, B, G).

118 S. Abdennadher and I. Sobhi

append(A, B, C) ∧ C
=B ⇔ A=[D|E] ∧ C=[F |G] ∧ D=F ∧

append(E, B, G) ∧ C
=B.

Then the following rules (among others) will be added from the generate and
test method:

append(A, B, C) ∧ B=[] ⇔ A=C ∧ B=[]. (10)
append(A, B, C) ∧ A=C ⇔ B=[] ∧ A=C. (11)
append(A, B, C) ∧ B
=[] ⇒ A
=C. (12)

Adding these rules improves the efficiency of the solver. For example, with
Rule 10 the recursion over the list A is replaced by a simple unification A = C if
list B is empty.

Implementation in CHR. The head of the generated rules may contain con-
straints that are built-in constraints for the CHR system. To have a running
CHR solver, these constraints should be removed from the head. This is done in
two steps:

– Equality constraints appearing in the head of a rule are propagated all over
the constraints in the head and body of the rule. Then the resulting con-
straints are simplified. This can be performed as follows. In turn, each equal-
ity constraint appearing in the head is removed and transformed in a sub-
stitution that is applied to the head and body.

– For other built-in constraints, the transformation leads to guarded CHR
rules [8].

Example 14. The following simplification rule for min:

min(A, B, C) ∧ B≤A ⇔ B≤A ∧ C=B.

will be transformed to the following guarded CHR simplification rule:

min(A, B, C) ⇔ B≤A | C=B.

Equivalent Definitions – Same Solvers. The generate and test method is
based on enumerating rule candidates and checking their validity against the
intentional definition. Thus, having two equivalent definitions the generate and
test will generate always the same set of rules.

However, using the symbolic construction method, the set of generated rules
for a constraint may differ for different but equivalent definitions of the con-
straint. The following example will show that the more compact the set of clauses
is, the more expressive the constructed solver is. This is intuitively clear since
the construction method generates rules for a clause by negating the bodies of all
other clauses which are added to the head and the body of the rule. In general,
negating more than a clause will lead to adding more than one constraint to the
head of the rule making it more restrictive.

Generation of Rule-Based Constraint Solvers: Combined Approach 119

Example 15. The constraint min of Example 1 can be defined by an equivalent
CLP program consisting of three clauses instead of two as follows:

min(A, B, C) ← A<B ∧ C=A.

min(A, B, C) ← A>B ∧ C=B.

min(A, B, C) ← A=B ∧ C=A.

The symbolic construction algorithm generates the following set of simplification
rules:

min(A, B, C) ∧ A<B ⇔ C=A ∧ A<B. (13)
min(A, B, C) ∧ A>B ⇔ C=B ∧ A>B. (14)
min(A, B, C) ∧ A=B ⇔ C=A ∧ C=B ∧ A=B. (15)
min(A, B, C) ∧ C
=A ⇔ C=B ∧ A>B ∧ C
=A. (16)

min(A, B, C) ∧ C
=B ∧ A
=B ⇔ C=A ∧ A<B ∧ C
=B. (17)
min(A, B, C) ∧ C
=B ∧ A≥B ⇔ false. (18)

Although the number of generated rules has increased compared to the set of
rules presented in Example 1, these rules are less expressive since:

– Rule 6 subsumes the two rules 13 and 15. Whereas Rule 6 will be applied for
the goal min(A, B, C) ∧ A≤B, no rule is applicable using the rules above.

– Rule 7 of the first solver is more general than its counterparts, Rule 17 and
Rule 18.

Using the combined approach, all rules of the generate and test method will be
added except Rule 16 which will not be checked or generated. Using the redun-
dancy pruning technique, all rules of the construction method will be removed
except Rule 16. The resulting solver of the combined approach is identical to the
solver generated for the min constraint defined using two clauses. However, it
should be noted that the solver obtained by construction using only two clauses
pruned the search tree better.

5 Conclusion

In this paper, we have extended the work done in the field of Inductive Constraint
Solving by providing a method that combines the advantages of the generate and
test approach with a symbolic construction method based on rewriting of CLP
programs.

In the combined approach, we first generate rules using the symbolic con-
struction method then we use them to prune the search tree of the generate and
test method. In general, the combined approach leads to more expressive and
efficient constraint solvers at a reduced cost. Some rules, like recursive rules that
cannot be generated using the generate and test method are generated using the
symbolic construction method.

One interesting direction for future work is to investigate the completeness
of the solvers generated. It is clear that in general this property cannot be

120 S. Abdennadher and I. Sobhi

guaranteed, but in some cases it should be possible to check it, or at least to
characterize the kind of consistency the solver can ensure.

References

1. Abdennadher, S., Frühwirth, T.: Integration and Optimization of Rule-based Con-
straint Solvers. In: International Symposium on Logic-based Program Synthesis
and Transformation, LOPSTR 2003. LNCS, Springer, Heidelberg (2004)

2. Abdennadher, S., Rigotti, C.: Automatic Generation of Propagation Rules for Fi-
nite Domains. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, Springer, Heidelberg
(2000)

3. Abdennadher, S., Rigotti, C.: Towards Inductive Constraint Solving. In: Walsh, T.
(ed.) CP 2001. LNCS, vol. 2239, pp. 31–45. Springer, Heidelberg (2001)

4. Abdennadher, S., Rigotti, C.: Automatic Generation of CHR Constraint Solvers.
Journal of Theory and Practice of Logic Programming (TPLP) 5(2) (2005)

5. Apt, K., Monfroy, E.: Automatic Generation of Constraint Propagation Algorithms
for Small Finite Domains. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 58–72.
Springer, Heidelberg (1999)

6. Codognet, P.: A Tabulation Method for Constraint Logic Programs. In: 8th Sym-
posuim and Exibition on Industrial Applications of Prolog (1995)

7. Warren, D.S., Cui, B.: A System for Tabled Constraint Logic Programming. In:
Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber,
M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861,
Springer, Heidelberg (2000)

8. Frühwirth, T.: Theory and Practice of Constraint Handling Rules, Special Issue
on Constraint Logic Programming. Journal of Logic Programming 37(1–3), 95–138
(1998)

9. Monfroy, E., Ringeissen, C.: Generating Propagation Rules for Finite Domains:
A Mixed Approach. In: Apt, K.R., Kakas, A.C., Monfroy, E., Rossi, F. (eds.)
Compulog Net WS 1999. LNCS (LNAI), vol. 1865, Springer, Heidelberg (2000)

10. Sobhi, I.: Constructive generation of rule-based constraint solvers. Master’s thesis,
German University in Cairo (2007)

A Scalable Inclusion Constraint Solver Using

Unification

Ye Zhang and Flemming Nielson

Informatics and Mathematical Modelling, Technical University of Denmark
{yez,nielson}@imm.dtu.dk

Abstract. We describe a parameterized framework with which users
can take advantage of unification over analysis variables to implement
efficient or precise analyses, or even both. To be illustrative we instantiate
the framework with reaching definition analysis and conduct a systematic
evaluation of performance and precision of the analysis. We compare our
result with that of a state-of-the-art solver, the Succinct Solver and show
our solver is at least 10-times faster than the Succinct Solver. On some
benchmarks linearity is reached by the use of unification. Although the
result of unification is often imprecise, a heuristic study is conducted to
detect where the loss of precision may happen. We apply the heuristics
on benchmarks and achieve not only efficient but also precise analysis.

1 Introduction

Program analyses are often expressed as a collection of constraints and then
implemented by an existing solver. This strategy separates analysis specification
from implementation and thus enables program analysis designers to share the
insights and efforts in solver technology. The challenge remains to develop an
analysis which is efficient and precise at the same time. For instance, in order
to speed up its computation the Succinct Solver [19] adopts former insights of
state-of-the-art solvers [15,9,8], including the use of recursion, continuations,
prefix tree and memorization. On the other hand, the solver consumes a large
amount of memory to maintain its complex data structures. This becomes a
problem for large programs and can significantly decrease efficiency as observed
in [25].

In this paper we aim to achieve the two aspects simultaneously by introducing
unification of equality constraints over analysis variables. This is based on two
insights. First, the analysis result of unification is always sound with respect
to that of set-inclusion. Second, unification can be solved in almost linear time
and reduces memory consumption as explained later. Actually our experimental
results show that our solver significantly outperforms the Succinct Solver: it
is at least 10-times faster and in some cases even 200-times faster than the
Succinct Solver. A substantially lower asymptotic complexity is also observed in
some benchmarks when using unification. Although using equality constraints
may lead to a loss in precision, a heuristic study shows that equivalence relation
between analysis variables widely exists in programs and can be taken advantage

King, A. (Ed.): LOPSTR 2007, LNCS 4915, pp. 121–137, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

122 Y. Zhang and F. Nielson

of by our solver to make both fast and precise analysis. Indeed the same approach
can be naturally applied on other analyses, like live variables analysis, very busy
expression analysis, etc.

Section 2 gives an introduction to related works. In section 3 we present a
constraint language and a framework for its solutions under which users can
tune the systems to achieve the best balance between performance and precision
by switching between equality constraints and inclusion constraints. We give
two versions of semantic explanation to the constraint language: the first one
(Section 3) is standard and represents the users’ view of the language; the sec-
ond (Section 4) makes clearer how the equality benefits us in time and space.
Furthermore it sheds light on the algorithm design. We study the properties of
both versions and show the connections between them. In Section 5 we consider
the systematic design of a fixpoint engine whose complexity is between cubic
and almost linear. To make our ideas concrete, in Section 6 we implement a
classical data flow analysis, reaching definitions analysis, and demonstrate unifi-
cation can improve performance considerably while still achieving a high degree
of precision.

2 Related Works

In this paper we shall look at analysis problems over a finite universe and com-
pute complete solutions. The Succinct Solver is a constraint solver which works
over the same universe as ours. It is built on previous insights on adopting func-
tional programming for implementing solvers [15,9,8] and uses the alternation-
free fragment of Least Fixpoint Logic (ALFP) as the specification logic. Because
of the expressiveness of this logic, the solver has been used for the implemen-
tation of a variety of analyses [20,10,3]. The result of [4] shows that reordering
constraints can improve performance considerably. The further study in [21]
shows that the performance of the Succinct Solver is at most a small constant
factor worse than XSB Prolog but in optimum cases the solver outperforms XSB
Prolog significantly. In order to generate efficiently solvable constraints, however,
one needs to understand how clauses are solved in the Succinct Solver. We here
attempt to optimize the performance of our solver from the user’s point of view
by simply adjusting the use of set-inclusion and equality. Therefore users do not
have to know any technical details inside a solver but are still able to tune a
system to fit their specific needs. While all of our constraints can be expressed
in ALFP, we gain much in terms of efficiency by having equality constraints
explicitly.

Unification has been used to yield efficient implementation and concise results
in program analyses, such as type inference system [17,13,22] and control flow
analyses [12]. The work of [7] further presents a parameterized framework for a
type system that allows expression of constraint-based analyses in varying levels
of efficiency and precision with mixed-terms [1,14]. While our approach is close
in spirit to this framework, we include equality constraints over analysis variables
and confine ourselves to the flat universe as in most Datalog solvers.

A Scalable Inclusion Constraint Solver Using Unification 123

Heintze and Jaffar [11] investigate definite set constraints and show that all
satisfiable constraints in the class have a least model. Charatonik and Podelski [5]
further showed that solving definite set constraints has DEXPTIME complexity.
Although the set minus operation, which contains negative set expression, i.e. α\
c ≡ α∩¬c, makes our constraints fall out of the scope of definite set constraints,
we show that the Moore family result still holds for the constraints of interest.
Melski and Reps [16] proved a subclass of definite set constraints can be solved
in cubic time in studying a simple data-flow reachability problem. While their
constraints use only projection and terms, we include the operations set minus
and intersection on a flat universe and show that the constraint solving has the
same complexity. With unification, however, the complexity can be reduced to
almost linear time. The question, then, is what is the tradeoff from doing this.
Our experimental results show that many equivalent analysis variables arise and
the level of efficiency and precision achieved are also quite encouraging. We are
optimistic about finding more places of using unification for more analyses of
process calculi or real imperative languages, e.g. C.

3 Inclusion Constraint Language

We present an inclusion constraint language over sets of tuples of atomic values.
In terms of set constraints, an atomic value is a term of arity 0. We describe a
parameterized framework in having both set-inclusion and equality over analysis
variables. The ability to switch between the two relations gives users the flexibil-
ity of tuning the performance and precision of analyses. The constraint language
is different from the set constraints studied by Melski and Reps [16] in having
both set minus and intersection. It also deviates from definite set constraints [11]
in including set minus. We will show, however, that any satisfiable constraints
of the class can be solved in cubic time and still have a least model. Specifically
a constraint clause P is defined by

ϕ ::= c ⊆ α | β ⊆s α | β ⊆e α | α \ c ⊆ β | α \(D) ⊆ β | α ∩ β ⊆ γ | ϕ1 ∧ ϕ2

D ::=? | ?, D | m | m, D

where α, β and γ ∈ AVar are analysis variables over constants c ∈ Ĉonst, i.e. a
set of tuples consisting of a list of abstract elements m ∈ E separated by ‘,’. The
two new operators ⊆s and ⊆e are considered as subset-inclusion and equality re-
spectively. The superscript functions as a pointer marking where a set-inclusion
might be changed to equality and vise versa. It is possible to express the con-
straints α ∪ β ⊆s γ and α ⊆s β ∩ γ in terms of more primitive operations, e.g.
α ∪ β ⊆s γ is equivalent to α ⊆s γ ∧ β ⊆s γ; thus they are not included among
the primitive operations. We dispense with the union on the right hand side
α ⊆s β ∪ γ since it would destroy the Moore family property. For set minus
constraint, besides standard set minus operation over constants, we introduce
a new syntax category D to represent a set of tuples: the values of some posi-
tions of all these tuples are fixed and the rest can be any elements (represented

124 Y. Zhang and F. Nielson

Table 1. Standard Semantics

1. ψ̂ |= c ⊆ α iff c ⊆ ψ̂(α)

2. ψ̂ |= β ⊆s α iff ψ̂(β) ⊆ ψ̂(α)

3. ψ̂ |= β ⊆e α iff ψ̂(β) = ψ̂(α)

4.1 ψ̂ |= α \ c ⊆ β iff ψ̂(α) \ c ⊆ ψ̂(β)

4.2 ψ̂ |= α \(D) ⊆ β iff ψ̂(α) \(D) ⊆ ψ̂(β)

5. ψ̂ |= α ∩ β ⊆ γ iff ψ̂(α) ∩ ψ̂(β) ⊆ ˆψ(γ)

6. ψ̂ |= ϕ1 ∧ ϕ2 iff ψ̂ |= ϕ1 and ψ̂ |= ϕ2

by ‘?’). The overloaded set minus operation removes all tuples matching (D)
from a set S, formally

S \ (m1, · · · , mi1−1, ?, mi1+1, · · · , mik−1, ?, mik+1, · · · , mn) =

S \{(m1, · · · , mi1−1,
1, mi1+1, · · · , mik−1,
k, mik+1, · · · , mn) |
1, · · · ,
k ∈ E}

This syntax category not only generates a succinct coding but also reduces
sharply the number of constraints generated as further demonstrated in
Section 6.

Standard Interpretation. Given an interpretation ψ̂ ∈ ̂Env, which maps
analysis variables to constants, for a clause ϕ the satisfaction relation ψ̂ |= ϕ is
specified as in Table 1. Consider, for instance, a constraint

{(a, b)} ⊆ α ∧ α ⊆s β ∧ {(c, d)} ⊆ β (Ex.1)

It is easy to verify that ψ̂ given by ψ̂(α) = {(a, b)} and ψ̂(β) = {(a, b), (c, d)} is
a solution. Actually it is also the least one: any estimate ψ̂′ such that ψ̂ � ψ̂′

satisfies Ex.1 (where we use the standard partial order � on the mappings of
̂Env, formally, for ψ̂, ψ̂′ ∈ ̂Env : ψ̂ � ψ̂′ iff ∀x ∈ AVar : ψ̂(α) ⊆ ψ̂′(α).)
Since in general we are interested in a least solution, the following theorem then
guarantees that a unique least solution does exist for any solvable constraints.

Theorem 1. For each clause ϕ, the set {ψ̂| ψ̂ |= ϕ} is a Moore family.

First observe that (̂Env,⊆) is a complete lattice. The proof is then a straight-
forward structural induction on ϕ.

Intuitively, using equality instead of set-inclusion is safe since equality is more
strict than set-inclusion. To formalize this observation, we define a relation≤ over
clauses: For all ϕ1, ϕ2 ∈ P, ϕ1 ≤ ϕ2 if and only if ϕ2 can be obtained by substi-
tuting operator ⊆e for some or all operators ⊆s of ϕ1. We shall also say that ϕ1

can be lifted to ϕ2 if ϕ1 ≤ ϕ2. Prop. 1 and 2 state that any acceptable solution to
a lifted clause is also valid to its original one and so is the least solution.

Proposition 1. For all ϕ1, ϕ2 ∈ P, if ψ̂ |= ϕ2 and ϕ1 ≤ ϕ2, then ψ̂ |= ϕ1.

The proof is conducted by an induction on ϕ1 based on the observation that
ψ̂(α) = ψ̂(β) ⇒ ψ̂(α) ⊆ ψ̂(β). Finally from Prop. 1 and Thm. 1, we have that

Proposition 2. For all ϕ1, ϕ2 ∈ P, if ϕ1 ≤ ϕ2, then �{ψ̂ | ψ̂ |= ϕ1} �
�{ψ̂ | ψ̂ |= ϕ2}.

A Scalable Inclusion Constraint Solver Using Unification 125

On the other hand, equality constraints do not necessarily lead to a loss in
precision. For example, consider the clause

{(a, b), (c, d)} ⊆ α ∧ {(c, d)} ⊆ β ∧ α ⊆s β ∧ β \ {(a, b)} ⊆ γ (Ex.2)

Here a least model β has no more data than α. In fact switching s to e in the
constraint would preserve precision.

As we show in Section 5, general constraints can be solved in cubic time
while unification on equality constraints is nearly linear. Under the framework
we present, a general strategy of tuning systems is to try set-inclusion first since
normally we would always prefer a precise solution if performance is acceptable.
If the efficiency of the computation is unsatisfactory, we can syntactically adjust
the superscript symbols of clauses and repeat the procedure until we reach a
good balance between performance and precision.

4 Interpretation Using Type Variables

The standard semantics is user-friendly but unclear in specifying how unifica-
tion benefits our computation. We would like to make it explicit in the semantic
specification so that the interesting properties of the new interpretation can
be addressed separately from the algorithm of constraint solving. We present a
double-layer interpretation using a new category, type variables i ∈ TV, and
enforce that equivalent analysis variables map onto the same type variable ex-
plicitly in semantics and hence the corresponding constants are collapsed into
one constant. One challenge of adopting the type-variable solution is that now
the least solution is not unique and may even potentially be infinite. We study
the relation between the least solutions and present the principle of designated
solution to remove the non-determinism of the choice of type variables. We show
further the correctness of the second semantics with respect to the first. There-
fore our user only need to understand the first semantics and the strategy of
tuning systems, and he may leave the technical details of solving constraints
to us.

A type-variable solution has two components: the type environment ψ̂1 ∈
EnvT, which maps analysis variables to type variables, and the type-binding
environment ψ̂2 ∈ ÊnvTB, which maps type variables to constants. The rules
are given in Table 2. If we assume that ψ = ψ̂2 ◦ ψ̂1 then the rules are the same
as before except for the third one, which enforces that two equivalent analysis
variables must be unified onto the same type variable, i.e. ψ̂1(β) = ψ̂1(α). In
this way unification is required explicitly. To further illustrate the difference,
consider the two estimates of the lifted version of the example Ex.1,

(a) ψ̂1(α) = 1 ψ̂2(1) = {(a, b), (c, d)} (b) ψ̂1(α) = 1 ψ̂2(1) = {(a, b), (c, d)}
ψ̂1(β) = 1 ψ̂1(β) = 2 ψ̂2(2) = {(a, b), (c, d)}
ψ̂1(γ) = 2 ψ̂2(2) = {(a, b)} ψ̂1(γ) = 3 ψ̂2(3) = {(a, b)}

Ex.3

126 Y. Zhang and F. Nielson

Table 2. Semantics Using Type Variables

1. (ψ̂1, ψ̂2) |=T c ⊆ α iff c ⊆ ψ̂2(ψ̂1(α))

2. (ψ̂1, ψ̂2) |=T β ⊆s α iff ψ̂2(ψ̂1(β)) ⊆ ψ̂2(ψ̂1(α))

3. (ψ̂1, ψ̂2) |=T β ⊆e α iff ψ̂1(β) = ψ̂1(α)

4.1 (ψ̂1, ψ̂2) |=T α \ c ⊆ β iff ψ̂2(ψ̂1(α)) \ c ⊆ ψ̂2(ψ̂1(β))

4.2 (ψ̂1, ψ̂2) |=T α \(D) ⊆ β iff ψ̂2(ψ̂1(α)) \(D) ⊆ ψ̂2(ψ̂1(β))

5. (ψ̂1, ψ̂2) |=T α ∩ β ⊆ γ iff ψ̂2(ψ̂1(α)) ∩ ψ̂2(ψ̂1(β)) ⊆ ψ̂2(ψ̂1(γ))

6. (ψ̂1, ψ̂2) |=T ϕ1 ∧ ϕ2 iff (ψ̂1, ψ̂2) |=T ϕ1 and (ψ̂1, ψ̂2) |=T ϕ2

Both of them are acceptable for the first semantics whereas only (a) is valid this
time since ψ̂1(α)
= ψ̂1(β). Notice also that the unification coalesces the analysis
variables onto one type variable and hence avoids storing redundant informa-
tion in the environment ÊnvTB. However since the choice of type variables is
nondeterministic, the ordering on the set of solutions is not a partial-order but
a pre-order, i.e. reflexive, transitive but not antisymmetric.

Definition 1. For (ψ̂1, ψ̂2), (ψ̂′
1, ψ̂

′
2) ∈ EnvT × ÊnvTB, define

(ψ̂1, ψ̂2) � (ψ̂′
1, ψ̂

′
2) ⇐⇒ ∃π : TV → TV : ψ̂′

1 = π ◦ ψ̂1 ∧ ψ̂2 � ψ̂′
2 ◦ π

where π is a total function and ψ̂2 � ψ̂′
2 ◦ π ⇔ ∀ i ∈ TV : ψ̂2(α) ⊆ ψ̂′

2(π(i)).

Apparently, for the set of solutions of a clause, a unique least model is not assured
any more. However we can show that given a constraint, if a pair is acceptable
then so are all its equivalences.

Proposition 3. If (ψ̂1, ψ̂2) |=T ϕ ∧ (ψ̂1, ψ̂2) ≡ (ψ̂′
1, ψ̂

′
2), then (ψ̂′

1, ψ̂
′
2) |=T ϕ.

where ≡ is the induced equivalence, i.e. ≡ is � ∧ !. In preparation for the proof
we first show two lemmata as follows.

Lemma 1. (ψ̂1, ψ̂2) � (ψ̂′
1, ψ̂

′
2) if and only if

∀x, y ∈ AVar : ψ̂1(x) = ψ̂1(y) ⇒ ψ̂′
1(x) = ψ̂′

2(y) ∧ (1)

∀z ∈ AVar : ψ̂2(ψ̂1(z)) ⊆ ψ̂′
2(ψ̂

′
1(z)) (2)

Following from the Def. 1 the lemma is proved by the observation that every
equivalence analysis variable should bind to the same type variable and the
functional compositions of the two pairs have the relation ψ̂2 ◦ ψ̂1 ⊆ ψ̂2 ◦ ψ̂1.
Lemma 1 provides a more constructive way of verifying the relation � than Def.
1. We further extend the lemma over the equivalence relation straightforwardly.

A Scalable Inclusion Constraint Solver Using Unification 127

Lemma 2. (ψ̂1, ψ̂2) ≡ (ψ̂′
1, ψ̂

′
2) iff

∀x, y ∈ AVar : ψ̂1(x) = ψ̂1(y) ⇔ ψ̂′
1(x) = ψ̂′

2(y) ∧ (3)

∀z ∈ AVar : ψ̂2(ψ̂1(z)) = ψ̂′
2(ψ̂

′
1(z)) (4)

This shows that the equivalence of two pairs amounts to checking the conjuncts
(3) and (4).

Proof. We now prove Prop. 3 by induction on ϕ. For the case c ⊆ α assume
that (ψ̂1, ψ̂2) |=T c ⊆ α and (ψ̂1, ψ̂2) ≡ (ψ̂′

1, ψ̂
′
2) From rule 1 in Table 2 we

have c ⊆ ψ̂2(ψ̂1(α)) and by Lemma 2 we have ψ̂2(ψ̂1(x)) = ψ̂′
2(ψ̂

′
1(x)) and hence

c ⊆ ψ̂′
2(ψ̂′

1(x)) because of the transitivity of inclusion relation. Finally the first
rule in Table 2 allows us to conclude that (ψ̂′

1, ψ̂
′
2) |=T c ⊆ x as desired. Other

cases can be proved similarly.

It is straightforward to verify that least upper bounds of a pre-ordered set (if
there are any) are equivalent to each other as stated below.

Fact 1. If x and y are two least upper bounds (greatest lower bounds) of a set
S ⊆ P then x ≡ y.

To prove the existence of least solution(s) we introduce the concepts of the
designated greatest lower bound (least upper bound) of a subset S of a pre-
ordered set P denoted by �̂S (�̂S). We shall assume that there is a choice
function which, given a set of elements, returns a designated one. Accordingly
we present the concepts of complete prelattice and Moore family in complete
prelattice in order to show that the least models exist for any satisfiable clauses.

Definition 2 (Complete Prelattice). A complete prelattice P = (P,�, �̂, �̂,

⊥̂, #̂) is a preordered set such that all its subsets have least upper bounds (with
�̂S a designated least upper bound for S) and greatest lower bounds (with �̂S

a designated greatest lower bound for S). Furthermore, ⊥̂ = �̂ ∅ = �̂P is a
designated least element and #̂ = �̂ ∅ = �̂P is a designated greatest element.

Lemma 3. For a preordered set (P,�) the following statements are equivalent:
(1) (P,�) can be extended to a complete prelattice (P,�, �̂, �̂, ⊥̂, #̂);
(2) Every subset of P has a least upper bound;
(3) Every subset of P has a greatest lower bound.

Following from the above definition and lemma, we have

Fact 2. (EnvT × ÊnvTB,�) is a complete prelattice.

The definition and lemma above are quite similar to their counterparts in the
partially ordered world. This is because the designated bound allows us to work
around the randomness of choosing type variables. However, sticking to the des-
ignated solutions may be too strict in defining a Moore family for complete
prelattices. For instance, consider a subset S of a pre-ordered set R. A rather re-
strictive definition of Moore family could be: ∀S′ ⊆ S : �̂S′ ∈ S, i.e. S is closed

128 Y. Zhang and F. Nielson

under the designated greatest lower bound. However since the Moore family
property is really concerned with the existence of the greatest lower bound, we
prefer a more flexible definition that retains the original meaning of Moore fam-
ily: Instead of enforcing �̂S′ ∈ S we want to express that ∃u : u ≡ �̂S′ ∧ u ∈ S.
This idea is further formalized by a compositional operator ≡∈ (read as ”is
represented in”).

Definition 3 (Relation ≡∈). For an element e and a set P , we say that
e ≡∈ P if and only if there exists an element e′ such that e ≡ e′ and e′ ∈ P .

Definition 4 (Moore Family for A Complete Prelattice). A Moore fam-
ily for a complete prelattice is a subset M of a complete prelattice P = (P,�)
such that it is closed under greatest lower bounds, formally ∀M ′ ⊆ M : �̂M ′ ≡∈
M . Similar to Moore families for partially ordered sets, a Moore family for a
complete prelattice always contains at least one least element and one greatest
element, formally �̂∅ ≡∈ M and �̂M ≡∈ M . Thus it is never empty.

Applying the above definition, we have that the least solution is guaranteed for
the set of pairs (ψ̂1, ψ̂2) such that (ψ̂1, ψ̂2) |=T ϕ, formally:

Theorem 2. A set of solutions given by {(ψ̂1, ψ̂2)| (ψ̂1, ψ̂2) |=T ϕ} is a Moore
family for a complete prelattice.

The proof is by a structural induction on ϕ based on two observations. First note
that (EnvT × ÊnvTB,�, �̂T) is a complete prelattice. Second, let �̂(ψ̂i

1, ψ̂
i
2) =

(ψ̂�̂
1 , ψ̂�̂

2) then for any analysis variables α, β and γ, we have that ψ̂�̂
1 (α) =

ψ̂�̂
1 (β) ⇔ ψ̂i

1(α) = ψ̂i
1(β) and ψ̂�̂

2 (ψ̂�̂
1 (γ) = ∩iψ̂

i
2(ψ̂1(γ)). Accordingly we can

show (ψ̂�̂
1 , ψ̂�̂

2) is also satisfiable for each case.
Finally we relate the results of the type variable interpretation back to those

of the standard one by showing (1) the second semantics complies with the lifting
strategy (in Prop. 4) and (2) the least solution using type variable is as precise
as that of the standard one (in Prop. 4).

Proposition 4. If ϕ1 ≤ ϕ2 and (ψ̂1, ψ̂2) |=T ϕ2 then (ψ̂1, ψ̂2) |=T ϕ1.

Proof. The proof is a straightforward induction on the clause ϕ1.

Proposition 5. Let (ψ̂�̂
1 , ψ̂�̂

2) = �̂ {(ψ̂1, ψ̂2)| (ψ̂1, ψ̂2) |=T ϕ} for some ϕ ∈
Term, and ψ̂� = �{ψ̂| ψ̂ |= ϕ}, then ψ̂�̂

2 ◦ ψ̂�̂
1 = ψ̂�.

Before proving the proposition, we first observe that

Lemma 4. If (ψ̂1, ψ̂2) |=T ϕ, then ψ̂2 ◦ ψ̂1 |= ϕ.

and the proof is a straightforward induction on ϕ.
Finally to prove Prop. 5 we further observe that under a least model the

map from analysis variable to data fields for two semantics is exactly same: type
variables have no effect on it.

A Scalable Inclusion Constraint Solver Using Unification 129

5 Constraint Solving

We refer to the approach of [18] and present a graph formulation of constraints
for computing a least solution for a program. A graph has nodes i ∈ TV and
the two maps D1 : AVar → TV and D2 : TV → Ĉonst are used to associate
nodes with analysis variables and constants with nodes respectively. A directed
edge connecting nodes is decorated with the construct that gives rise to it: the
constraints α ⊆s β, α \ c ⊆ β and α \ (D) ⊆ β give rise to an edge from D1[α]
to D1[β]; similarly the constraint α ∩ β ⊆ γ contributes two edges at the same
time, i.e. from D1[α] to D1[γ], and D1[β] to D1[γ].

An equality relation never generates any edge. Thus when lifting is applied
fewer edges are generated and thus the generated graph is smaller. In contrast
it helps to remove redundant edges. For example, assume that α ⊆e γ, then the
edge from α to γ is not needed for any of the constraints α ⊆s γ, α \ c ⊆ γ or
α \ (D) ⊆ γ and α ∩ β ⊆ γ.

To be more specific consider the algorithm of Table 3. It takes as input a
pair of constraint lists (U, N), where U contains all equality constraints and N all
the others. Given a conjunction of constraints it is straightforward to generate
the pair. Finally the algorithm outputs a solution (D1, D2) ∈ EnvT × EnvTB.
We restrict ourselves to entities occurring in the constraints of interest: Let
AVar� ⊆ AVar and TV� ⊆ TV be the finite sets of interest respectively. The
data structure W is a list of analysis variables, whilst given a type variable i, the
data structure E returns a list of decorations of edges starting from i.

Step 1 is to initialize the data structures used through the algorithm and Step
2 implements the fast union/find data structure [23] to coalesce equivalent anal-
ysis variables onto the designated type variables according to the given equality
constraints. Next the graph is built and the initial assignments to D2 are exe-
cuted in Step 3. This is conducted by the procedure add(α, c) that incorporates
d into D2[D1[α]] and adds α to the worklist if c was not contained in D2[D1[α]].
Here equality constraints are dispensed with since they can never be part of N.
The iteration in the fourth step then continues propagating contributions along
edges until the worklist is empty. We use the worklist strategy LIFO and con-
sider the benefit of using unification remains for other worklist strategies since
simplifying the constraint graph by using unification always benefits iterative
computation.

Concerning algorithm complexity, observe that for a clause of size n there
are O(n) nodes and O(n) constructs. Thus Steps 1 and 3 are O(n). Step 2
takes time O(m · α(m, n)) where m is the number of equality constraints that
is bounded by O(n), n is the number of analysis variables and α is the inverse
Ackermann’s function that grows very slowly. Finally O(n) operations are needed
to re-associate equivalence analysis variables with a designated type variable.

Before analyzing the complexity of Step 4, we need first to clarify what the
complexity of the operations upon constants (set of tuples) actually is. In our
implementation, each tuple is encoded as a bit and the number of tuples is O(n);
thus the set operations are over bit-vectors of the length n and take linear time.
Next observe two facts: (1) there are O(n) edges generated from a clause of size n

130 Y. Zhang and F. Nielson

Table 3. Worklist Algorithm

INPUT : (U, N)
OUTPUT : (D1, D2)
Step 1 : W := nil;

for αi in AVar� do D1[αi] := i; D2[i] = ∅; E[i] = nil;
Step 2 : unify(U) (* Function implementing fast union/find data structure *)
Step 3 : for cc in N do

case cc of
c ⊆ α : add(α, c);
α ⊆s β : if D1[α] �= D1[β] then E[D1[α]] := cons(cc, E[D1[α]]);
α\c ⊆ β : if D1[α] �= D1[β] then E[D1[α]] := cons(cc, E[D1[α]]);
α\(D) ⊆ β : if D1[α] �= D1[β] then E[D1[α]] := cons(cc, E[D1[α]]);
α ∩ β ⊆ γ : if D1[α] �= D1[γ] then E[D1[α]] := cons(cc, E[D1[α]]);

if D1[β] �= D1[z] then E[D1[β]] := cons(cc, E[D1[β]]);

Step 4 : While W �= nil do
γ := head(W);W := tail(W);
te := E[D1[γ]];
for cc in te do

case cc of
α ⊆s β : add(β, D2[D1[α]]);
α\c ⊆ β : add(β, D2[D1[α]]\c); (* standard set minus *)
α\(D) ⊆ β : add(β, D2[D1[α]]\(D)); (* overloaded set minus *)
α ∩ β ⊆ γ : add(γ,D2[D1[α]] ∩ D2[D1[β]]);

procedure add(α, c) is
if ¬(c ⊆ D2[D1[α]]) then D2[D1[α]] := D2[D1[α]] ∪ c;

W := cons(α, W);

and (2) each edge can be traversed at most O(n) times as there are O(n) nodes.
Therefore letting ni be the number of edges bound to the node i, we have that
the time of iteration is O(Σi∈TV� (n · ni · n)) = O(n3) where the first n is the
number of traversals on each edge and the second is the time of set operations.
Therefore the overall complexity of our algorithm is O(n3).

Finally we prove the correctness of the algorithm:

Theorem 3. Given a clause ϕ the output of the algorithm of Table 3 satisfies

(D1, D2) ≡ �̂{(ψ′
1, ψ

′
2)|(ψ′

1, ψ
′
2) |=T ϕ}

i.e., (D1, D2) is a least solution to ϕ.

The proof is based on two observations. First we can show that (D1, D2) |=T ϕ
by inspecting the calculation of the algorithm for each construct. Second observe
that for all (ψ̂1, ψ̂2) such that (ψ̂1, ψ̂2) |=T ϕ we have two invariants: (1) ∀α, β ∈
AVar : D1(α) = D1(β) ⇒ ψ̂1(α) = ψ̂1(β) and (2) ∀γ : D2(D1(γ)) ⊆ ψ̂2(ψ̂1(γ)),
thereby proving (D1, D2) is a least model.

A Scalable Inclusion Constraint Solver Using Unification 131

Table 4. Reaching Definitions Analysis: Set Inclusion

[ass] (RD◦, RD•) |= [x := e]l iff RD◦(l) \ (x, ?) ⊆ RD•(l)
{(x, l)} ⊆ RD•(l)∧

[skip] (RD◦, RD•) |= [skip]l iff RD◦(l) ⊆s RD•(l) (i)

[exp] (RD◦, RD•) |= [exp]l iff RD◦(l) ⊆s RD•(l) (ii)

[comp] (RD◦, RD•) |= S1; S2 iff (RD◦, RD•) |= S1∧
(RD◦, RD•) |= S2∧
∧∀l∈final(S1)RD•(l) ⊆s RD◦(init(S2)) (iii)

[if] (RD◦, RD•) |= if [b]l then S1 else S2

iff (RD◦, RD•) |= S1∧
(RD◦, RD•) |= S2∧
(RD◦, RD•) |= b∧
RD•(l) ⊆s RD◦(init(S1))∧ (iv)
RD•(l) ⊆s RD◦(init(S2)) (v)

[wh] (RD◦, RD•) |= while [b]l do S
iff (RD◦, RD•) |= S∧

(RD◦, RD•) |= b∧
RD•(l) ⊆s RD◦(init(S))∧ (vi)
∧∀l′∈final(S)RD•(l

′) ⊆s RD◦(l) (vii)

6 Case Study: Reaching Definitions Analysis

In this section we study the effect of applying unification on an intraprocedural
reaching definitions analysis for a subset of the C language. We demonstrate that
a significant improvement in performance can be achieved by using unification.
The analysis is also implemented with the Succinct Solver for comparison.

The syntax of the C-like language is given by

S ::= [x := a]� | [skip]� | [exp]� | S1; S2 | if [b]� then S1 else S2 | while [b]� do S

and we shall assume each elementary block is assigned a unique label � ∈ Lab.
The analysis specification using only set-inclusion is specified in Table 4 and the
liftable constraints are numbered. Two caches are used for recording the analy-
sis results of program points, i.e. the entry and exit of elementary statements,
RD◦, RD• : Lab × P(Var × Lab). The judgement of the analysis has the form
(RD◦, RD•) |= S and it is true if and only if the analysis result (RD◦, RD•)
correctly describes S. The two auxiliary functions initial and final are standard
and return the initial label and the set of final labels of a statement respectively;
for the while loop the initial label is l and the set of final labels is {l}. Note that
we use the extended version of set minus to generate constraints of constant size,
which could otherwise be linear.

In order to control the level of imprecision we conduct a heuristic study of
when and how imprecision may occur with respect to set-inclusion. Initially we

132 Y. Zhang and F. Nielson

would try lifting all the constraints from (i) to (vi), while retaining the flexibility
of changing back to set-inclusion for the constraints of the last four cases when
necessary. Lifting the constraint (vii), however, is very likely to decrease precision
and is therefore not recommended. We explain our choices in the following.

Lifting the constraints (i) and (ii) does not lead to imprecision because in-
tuitively the labels are unique and no data is changed between the entry and
exit of the statements. The cases [comp], [if] and [wh] are more complex and we
study [wh] first. To be illustrative, we visualize the flow of data by the graphs
below where ◦ and • denote the entry and exit point(s) respectively and the
square represents statements.

For the moment ignore the dashed lines in (a) and the remaining part basically
shows that the information goes through the test [b]l, flows to S where the
information may be updated and finally goes back to the entry of the test. Now
consider lifting the constraint of (vi) which may be represented by adding the
dashed line labeled 1. Checking if the change preserves precision then amounts
to verifying if the entry of S has no more data than the exit of [b]l. This is
the case if the first basic statement, say St, of S is not a while-loop following
the same argument of the cases [skip] and [exp] above. Otherwise as shown
by the dashed line labeled 2, some updated RD information would flow back
to the entry of S from the exit of St, denoted by a dotted circle on the side
of a square. (We here differentiate the two exit points in order to make the
presentation clear but note that they could be the same.) Finally the new RD
information reaches the exit and entry of [b]l assuming lifting is applied on (vi).
Now there are two possibilities: (1) if this information is not further updated
by any assignment in the rest of S, using equality at (vi) would give no more
data to the exit of [b]l than before considering the circle of data given by the
loop and accordingly no imprecision occurs. (2) Otherwise some analysis variable
assigned in St must be re-assigned later in S and instead of removing the former
RD information both of them are kept at the entry and exit of [b]l and hence
imprecision happens.

For the same reason as the case (2), replacing set-inclusion with equality in
(vii) is very likely to decrease precision. To be concrete, suppose some variable
x is assigned at some block labeled as l′ before [b]l and re-assigned in S so that
the pair (x, l′) should be removed at the exit of S. Using equality, however, will
re-add the deleted information to the exit of S as denoted by the line labeled 3.

Similarly we have that lifting the constraint (iv) and (v) of [if] maintains
precision if S1 does not start with a while-loop and otherwise may decrease

A Scalable Inclusion Constraint Solver Using Unification 133

Table 5. Execution time of the Inclusion Solver and the Succinct Solver

Program LOC T⊆s T⊆e Tss �T1 �T2 �T3

fibonacci 15 0.24 0.11 1.47 53 84 92

isPrime 18 0.24 0.13 1.20 48 80 90

lcm 23 0.25 0.20 3.80 21 93 95

ext gcd 22 0.23 0.16 2.54 32 91 94

nwtIter 14 0.16 0.07 1.09 56 85 93

wlfIter 20 0.38 0.20 1.87 48 80 89

sum 16 0.17 0.13 1.15 25 85 89

calculator 258 6.04 4.30 25.36 29 76 83

Improvement on Avarage 32 79 86

where:
�T1 = 1 − T⊆e/T⊆s

�T2 = 1 − T⊆s/T⊆ss

�T3 = 1 − T⊆e/T⊆ss

precision at the exit RD•(l). For the case [comp] observe that S1 may have
several exits and thus lifting all constraints of (iii) results in unifying the data of
these exits and hence decreases precision. On the other hand, if S2 starts with
a loop, we may also have more data as argued in the cases [if] and [wh]. This
completes our discussion.

6.1 Benchmarks: Representative Programs

We evaluate the performance of our solver on a set of representative programs
ranging in lines of code from 14 to 258. All experiments were run on a PC with
2.0 GHz CPU and 1.5 GB RAM and each experiment was repeated 5 times, and
average numbers have been used. All the time T is in millisecond (ms.) and the
improvement $T is in percent %. The results in terms of time performance are
presented in Table 5. The first column is the program name of which the first
7 programs implement a series of mathematical algorithms respectively while
‘calculator’ is a simple application. The columns T⊆s and T⊆e give the time to
perform the analysis before and after lifting respectively. The column Tss reports
the time to run the analysis on the Succinct Solver. Using unification results in a
significant reduction in execution time - on average 39% ($T1). Considering the
Succinct Solver, we observe that our solver is considerably faster - on average
84% faster using inclusion constraints and 91% faster using equality constraints1.
This may be explained by the fact that our solver employs much simpler data
structure than the Succinct Solver and thus has lower space usage.

We apply the heuristics to quickly detect all equality constraints that may
introduce extra false-positives and switch them back to inclusion constraints. The
adjusted constraints have exactly the same solution as the pure inclusion one, i.e.
S⊆s = Simpr

⊆e . But the remaining equivalences still enables our solver to solve the
constraints much faster. In fact the precision-improved version has almost the
same execution time as before. This demonstrates that many equivalent analysis
variables do exist and can be used to speed up the calculation significantly.

1 Note that the inclusion solution will be as precise as that of the Succinct Solver.

134 Y. Zhang and F. Nielson

Table 6. Performance of programs with improved precision

S⊆s = Simpr
⊆e

Program
T⊆s T impr

⊆e
�T ′

1

fibonacci 0.24 0.12 52

isPrime 0.24 0.15 39

lcm 0.25 0.21 18

extended gcd 0.23 0.16 32

newtonIter 0.16 0.09 43

wolfframIter 0.38 0.21 46

sum 0.17 0.13 25

calculator 6.04 4.45 26

Improvement on Avarage 29

where:

�T ′
1 = 1 − T impr

⊆e /T⊆s

Last but not least adopting a bit imprecise solution may still have its own value
if this does not prevent its client analysis from conducting any key optimization,
as described by Das et al.[6], or scalability is much more important than precision
in analyzing a huge system. If this is the case, we would expect to gain more
efficiency by lifting more inclusion constraints.

6.2 Benchmarks: Scalable Programs

The real programs allow us to measure the effect of using equality constraints
on time performance and precision. These programs, however, cannot easily be
extended to the required size. In order to evaluate scalability we design a series of
scalable programs with the desired size potential. Especially with well-designed
scalable programs we are able to measure asymptotic complexity of benchmarks
and further analyze the impact of using unification on complexity. Two families
of scalable programs are selected for detailed presentation in the following.

Wh(1,n) : while x0 < 2 do (x1 := x2;
...

xn−1 := xn;
xn := 1)

If(n,1) : if x1 < 0 then skip

else
...

if xn < 0 then skip
else x0 := 1

Here the first number of the subscript denotes the nesting depth of conditions,
and the second yields the number of all assignments. The constraints generated
for Wh(1,n) and If(n,1) are both of size O(n). Indeed it can be shown using
an amortization technique that both of the graphs have O(n) edges. We then
measure time performance of the two programs along with the increase of the
number n and the results are summarized in Figure 1.

The first figure shows that using equality and inclusion mixed constraints is
on average 25% faster than using pure inclusion constraints, which is at least
30-times and up to 200-times faster than the Succinct Solver. We observe that
the larger a program is the faster our solver is compared to the Succinct Solver.
Our solver also scales to much larger programs than the Succinct Solver. In fact

A Scalable Inclusion Constraint Solver Using Unification 135

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Time performance of while(1,n)

Parameter Size − n

T
im

e
(m

s)

while(n,1,s)
while(n,1,e)
while(n,1,SS)

10
3

10
4

10
5

10
1

10
2

10
3

10
4

10
5

Time performance of if(n,1)

Parameter Size − n

T
im

e
(m

s)

if(n,1,s) O(n2.38)
if(n,1,e) O(n1.12)
if(n,1,SS) O(n1.29)

Fig. 1. Experimental results: Wh(1,n) and If(n,1)

the Succinct Solver does not scale to programs of size n ≥ 1300. We observe
that both of the solvers suffer a sharp performance decline for large values of
n: n ≥ 750 in the case of the Succinct Solver, and n ≥ 9000 and n ≥ 11000
in the case of our solver. We hypothesize that this is because the large memory
consumption requires much extra effort in memory management. For our solver
especially, the computation time is so small when n is less than 250 that the
initialization time becomes a large constant factor impacting the asymptotic
complexity. To get the asymptotic growth rate of the solvers, we select the data
before performance deterioration happens and after the constant factor is no
longer dominating. By a least square fit technique on the model t = c1 ·mc + c0,
we estimate that the time complexity of the Succinct Solver, and our solver
without and with unification are O(n2.21), O(n2.02) and O(n2.01) respectively.

A significant improvement is observed in the program family If(1,n) (the sec-
ond graph of Fig. 1). As shown, our solver remains 30-times faster than the
Succinct Solver when using unification. Since no performance deterioration is
observed, the estimated complexities are printed out directly. Furthermore uni-
fication results in almost linear time complexity while set-inclusion takes more
than quadratic time and the Succinct Solver takes time O(n1.3).

The very different effects observed are because the constraints generated for n
assignments of Wh(1,n) remain O(n) by the rule [ass]. But applying unification to
If(n,1) means we only keep set-inclusion in the constraints for a constant number
of assignments and therefore the resulting graph has only a constant number of
edges.

7 Conclusion

We have presented a framework with which users can take advantage of unifi-
cation to implement efficient or precise analyses, or even both. We instantiate
the framework with our worked example and from the experimental results we

136 Y. Zhang and F. Nielson

conclude that (1) our constraint solver is a large constant factor faster than the
Succinct Solver for all the well designed benchmarks; using unification may lower
the asymptotic complexity even down to almost linear time; (3) unification need
not give rise to imprecision: a careful study of the conditions where imprecision
may or may not be incurred pays off in gaining the expected level of precision.

In future work, we would like to apply the framework to implementing control
flow analyses of process calculi like Klaim [2] and analyses for the imperative
languages, e.g. Java or C in order to better understand the extent to which uni-
fication can help achieve much more efficient implementation. This may require
some extension to the constraint language with constructs, for example, condi-
tional constraints, etc. Whaley et al. recently use BDDs to get efficient Datalog
implementation for pointer analysis [24]. It would also be interesting for us to see
how unification can be integrated with BDDs in achieving better performance.

References

1. Aiken, A.: Introduction to set constraint-based program analysis. Sci. Comput.
Program. 35(2), 79–111 (1999)

2. Bettini, L., Bono, V., Nicola, R.D., Ferrari, G.L., Gorla, D., Loreti, M., Moggi,
E., Pugliese, R., Tuosto, E., Venneri, B.: The Klaim Project: Theory and Practice.
In: Priami, C. (ed.) GC 2003. LNCS, vol. 2874, pp. 88–150. Springer, Heidelberg
(2003)

3. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.R.: Static validation
of security protocols. Journal of Computer Security 13(3), 347–390 (2005)

4. Buchholtz, M., Nielson, H.R., Nielson, F.: Experiments with succinct solvers. Tech-
nical report, Informatics and Mathematical Modelling, Richard Petersens Plads,
Building 321, DK-2800 Kgs. Lyngby, Denmark (February 2002)

5. Charatonik, W., Podelski, A.: Set constraints with intersection. Inf. Com-
put. 179(2), 213–229 (2002)

6. Das, M., Liblit, B., Fähndrich, M., Rehof, J.: Estimating the Impact of Scalable
Pointer Analysis on Optimization. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126,
Springer, Heidelberg (2001)

7. Fähndrich, M., Aiken, A.: Program analysis using mixed term and set constraints.
In: Van Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 114–126. Springer,
Heidelberg (1997)

8. Fecht, C., Seidl, H.: Propagating differences: An efficient new fixpoint algorithm
for distributive constraint systems. Nord. J. Comput. 5(4), 304–329 (1998)

9. Fecht, C., Seidl, H.: A faster solver for general systems of equations. Sci. Comput.
Program. 35(2), 137–161 (1999)

10. Gao, H.: Using the Succinct Solver to implement flow logic specifications of classical
data flow analysis. Master’s thesis, Technical University of Denmark (2004)

11. Heintze, N., Jaffar, J.: A decision procedure for a class of set constraints (extended
abstract). In: LICS, pp. 42–51. IEEE Computer Society, Los Alamitos (1990)

12. Heintze, N., McAllester, D.A.: Linear-time subtransitive control flow analysis. In:
SIGPLAN Conference on Programming Language Design and Implementation, pp.
261–272 (1997)

13. Henglein, F.: Global tagging optimization by type inference. In: LISP and Func-
tional Programming, pp. 205–215 (1992)

A Scalable Inclusion Constraint Solver Using Unification 137

14. Kodumal, J., Aiken, A.: Banshee: A scalable constraint-based analysis toolkit. In:
Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 218–234. Springer,
Heidelberg (2005)

15. Le Charlier, B., Van Hentenryck, P.: A universal top-down fixpoint algorithm.
Technical Report CS-92-25, Brown University (1992)

16. Melski, D., Reps, T.W.: Interconveritibility of set constraints and context-free lan-
guage reachability. In: PEPM, pp. 74–89 (1997)

17. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst.
Sci. 17(3), 348–375 (1978)

18. Nielson, F., Nielson, H.R., Hankin, C.L.: Principles of Program Analysis. Springer,
Heidelberg (1999)

19. Nielson, F., Seidl, H., Nielson, H.R.: A succinct solver for ALFP. Nord. J. Com-
put. 9(4), 335–372 (2002)

20. Nielson, H.R., Nielson, F., Buchholtz, M.: Security for mobility. In: Focardi, R.,
Gorrieri, R. (eds.) FOSAD 2001. LNCS, vol. 2946, pp. 207–265. Springer, Heidel-
berg (2004)

21. Pilegaard, H.: A feasibility study: The Succinct Solver v2.0, XSB prolog v2.6, and
flow-logic based program analysis for carmel. Technical Report SECSAFE-IMM-
008-1.0, Technical University of Denmark (2003)

22. Steensgaard, B.: Points-to analysis in almost linear time. In: POPL, pp. 32–41
(1996)

23. Tarjan, R.E.: Data Structures and Network Algorithms, volume CMBS44 of Re-
gional Conference Series in Applied Mathematics. SIAM (1983)

24. Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using datalog with binary decision
diagrams for program analysis. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp.
97–118. Springer, Heidelberg (2005)

25. Zhang, Y.: Static analysis for protocol validation in hierarchical networks. Master’s
thesis, Technical University of Denmark (2005)

Annotation Algorithms for Unrestricted

Independent And-Parallelism in Logic Programs

Amadeo Casas1, Manuel Carro2, and Manuel V. Hermenegildo1,2

1 Depts. of Comp. Science and Electr. and Comp. Eng., Univ. of New Mexico, USA
{amadeo,herme}@cs.unm.edu

2 School of Computer Science, Universidad Politécnica de Madrid, Spain
{mcarro,herme}@fi.upm.es

Abstract. We present two new algorithms which perform automatic
parallelization via source-to-source transformations. The objective is to
exploit goal-level, unrestricted independent and-parallelism. The pro-
posed algorithms use as targets new parallel execution primitives which
are simpler and more flexible than the well-known &/2 parallel operator.
This makes it possible to generate better parallel expressions by exposing
more potential parallelism among the literals of a clause than is possible
with &/2. The difference between the two algorithms stems from whether
the order of the solutions obtained is preserved or not. We also report on
a preliminary evaluation of an implementation of our approach. We com-
pare the performance obtained to that of previous annotation algorithms
and show that relevant improvements can be obtained.

Keywords: Logic Programming, Automatic Parallelization, And-
Parallelism, Program Transformation.

1 Introduction

Parallelism capabilities are becoming ubiquitous thanks to the widespread use
of multi-core processors. Indeed, most laptops on the market contain two cores
(capable of running up to four threads simultaneously) and single-chip, 8-core
servers are now in widespread use. Furthermore, the trend is that the number
of on-chip cores will double with each processor generation. In this context,
being able to exploit such parallel execution capabilities in programs as easily
as possible becomes more and more a necessity. However, it is well-known [17]
that parallelizing programs is a hard challenge. This has renewed interest in
language-related designs and tools which can simplify the task of producing
parallel programs.

The comparatively higher level of abstraction of declarative languages and,
among them, logic programming languages, allows writing programs which are
closer to the specification of the solution. Besides, there is often more freedom in
the implementation of different operational semantics which respect the declar-
ative semantics. In particular, the notion of control in declarative languages
frequently allows for more flexibility to arrange the evaluation order of some

King, A. (Ed.): LOPSTR 2007, LNCS 4915, pp. 138–153, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Annotation Algorithms for Unrestricted Independent And-Parallelism 139

operations, including executing them in parallel if deemed convenient, without
affecting the semantics of the original program. Additionally, the cleaner declara-
tive semantics makes it possible to automatically detect more accurately any lack
of dependencies among operations and hence to exploit opportunities for paral-
lelism more easily than in imperative languages. At the same time, in most other
respects in the case of logic programs the presence of dynamic data structures
with “declarative pointers” (logical variables), irregular computations, or com-
plex control makes the parallelization of logic programs a particularly interesting
case that allows tackling the more complex parallelization-related challenges in
a formally simple and well-understood context [11].

Because of this potential, automatic parallelization has received significant
attention in logic programming [10], where two main forms of parallelism have
been studied. Or-parallelism is exploited when the alternatives created by non-
deterministic goals are explored simultaneously. Some relevant or-parallelism
systems are Aurora [20] and MUSE [1]. And-parallelism aims at executing si-
multaneously (conjunctive) goals in clauses or in the resolvent. Examples of
systems that have exploited and-parallelism are DDAS [25] and &-Prolog [12].
Additionally, some systems such as ACE [9], AKL [16], and Andorra [24] exploit
certain combinations of both and- and or-parallelism. While or-parallelism can
only obtain speedups when there is search involved, and-parallelism can be used
in more algorithmic schemes, with divide-and-conquer and map-style algorithms
being classic representatives. In this paper, we concentrate on and-parallelism.

A correct parallelization has been defined as one that preserves during and-
parallel execution some key properties, typically correctness and no-slowdown
[14]. The preservation of these properties is ensured by executing in parallel
goals which meet some notion of independence, meaning that the goals to be
executed in parallel do not interfere with each other in some particular sense.
This can include for example absence of competition for binding variables plus
other considerations such as, e.g., absence of side effects. For simplicity, in the
rest of the paper we will assume that we are only dealing with side-effect free
program sections. Note however that this does not affect the generality of our
presentation, as we deal with dependencies in a generic way.

One of the best understood sufficient conditions for ensuring that goals meet
the efficiency and correctness criteria for parallelization is strict independence
[14], which entails the absence of shared variables at runtime between any two
goals being parallelized. It should be noted that some proposals exploit and-
parallelism between goals which do not meet this condition, but on which other
restrictions are imposed which also ensure no-slowdown and correctness. Ex-
amples of such restrictions are determinism and non-failure [14] (determinism
is exploited for example in [24]) and absence of conflicts due to the binding
of shared variables (as in non-strict independent and-parallelism [14]). Another
interesting issue is at what level of granularity the notion of independence is
applied: at the goal level, at the binding level, etc. Our work in this paper will
focus on goal-level (strict and non-strict) independent and-parallelism.

140 A. Casas, M. Carro, and M.V. Hermenegildo

One particularly successful approach to automatically parallelizing a logic
program uses three different stages [15,2,10]. The first one detects data (and
control) dependencies between pairs of literals in the original program. A depen-
dency graph (see Figure 1 as an example) is built to capture this information.
Nodes in the graph correspond to literals in the body of the clause and edges
represent dependencies between them. Edges are labeled with the associated de-
pendency conditions (which may be trivially true or false —we will not represent
those edges labeled with true). The second stage performs (global) analysis [3]
to gather information regarding, e.g., variable aliasing, groundness, side effects,
etc. in order to remove edges from the dependency graph or to simplify the con-
ditions labeling these edges, if they cannot be evaluated statically to completion.
Labeled edges will result in run-time checks if conditional parallel expressions
are allowed. Alternatively, unresolved dependencies can be assumed to always
hold, and parallel execution will be allowed only between literals which have been
statically determined to be independent. This approach saves run-time checks
at the expense of losing some parallelism. Finally, the third stage transforms the
original program into a parallel version by annotating it with parallel execution
operators using the information gathered by the analyzers [22]. This annotation
should respect the dependencies found in the original program while, at the same
time, exploiting as much parallelism as possible.

This annotation process is the focus of this paper. We will present and evaluate
new annotation algorithms which target and-parallelism primitives which can
express richer dependency graphs than those which can be encoded with the
nested fork-join approaches which have been previously proposed (e.g., [22]).
Our hope is that since the transformed programs will contain in some cases
more parallelism, we will be able to obtain better speedups for such cases.

2 Background and Motivation

We will introduce, with the help of an example, the well-known &/2 operator
for parallelism and its limitations, and we will show how better annotations for
parallelism are possible when other, simpler primitives, are used.

2.1 Fork-Join-Style Parallelization

We will use as running example the following clause:
p(X,Y,Z) :- a(X,Z), b(X), c(Y), d(Y,Z).

b(X)

c(Y) d(Y,Z)

a(X,Z)

Fig. 1. Dependency graph for p/3

and will assume that the dependen-
cies detected between the literals in
the predicate are defined by the graph
G = (V, E), shown in Figure 1. The
vertices V correspond to the literals
of the clause and there exists an edge
between two literals Li and Lj in E
if ind(Li, Lj)
= true (i.e., the literals

Annotation Algorithms for Unrestricted Independent And-Parallelism 141

p(X, Y, Z):-
(a(X, Z), b(X)) & c(Y),
d(Y, Z).

(a) fj1 : Order-preserving

p(X, Y, Z):-
a(X, Z) & c(Y),
b(X) & d(Y, Z).

(b) fj2 : Non-order-preserving

Fig. 2. Fork-Join annotations for p/3 (Section 2)

Li and Lj are dependent and thus the literal Li has to be completed before the
literal Lj), where ind is the notion of independence. As mentioned before, this
information is obtained in our case from global data-flow analysis [3].

We will assume in the rest of the paper that all the dependencies are un-
conditional —i.e., conditional dependencies are assumed to be always false. This
brings simplicity and avoids potentially costly run-time checks in the parallelized
code at the expense of having fewer opportunities for parallelism. However, it
has been experimentally found to be a good compromise [22,3].

Conjunctive parallel execution has traditionally been denoted using the &/2
operator instead of the sequential comma (‘,’). The former binds more tightly
than the latter. Thus, the expression “a, b & c, d” means that literals b and c
can be safely executed in parallel after the execution of literal a finishes. When
both b and c have successfully finished, execution continues with d.

While this single operator is enough to parallelize many programs, the class of
dependencies it can express directly (i.e., dependency graphs with a nested fork-
join structure) is a subset of that which can possibly appear in a program [22].
This makes parallelism opportunities to be inevitably lost in cases with a complex
enough structure (e.g., that in Figure 1). Likewise, inter-procedural parallelism
(i.e., parallel conjunctions which span literals in different predicates) cannot be
exploited without program transformation.

In general, several annotations are possible for a given clause. As an example,
Figure 2 shows two annotations for our running example.1 Some goals appear
switched w.r.t. their order in the sequential clause. This respects the dependen-
cies in Figure 1, which reflects a valid notion of parallelism (i.e., if solution order
is not important). If additional ordering requirements are needed (due to, e.g.,
side effects or impurity), these should appear as additional edges in the graph.

Note that none of the annotations in Figure 2 fully exploits all parallelism
available in Figure 1: Figure 2(a) misses the parallelism between b(X) and d(Y,
Z), and Figure 2(b) misses the parallelism between b(X) and c(Y).

One relevant question is which of these two parallelizations is better. Ar-
guably, a meaningful measure of their quality is how long each of them takes
to execute. We will term those times Tfj1 and Tfj2 for Figures 2(a) and 2(b),
respectively. This length depends on the execution times of the goals involved
(i.e., Ta, Tb, Tc, Td), which we assume to be non-zero. Tfj1 and Tfj2 are:

Tfj1 = max(Ta + Tb, Tc) + Td (1)

1 The parallelization p :- a(X, Z), b(X) & c(Y), d(Y, Z) has been left out of Fig-
ure 2. It would not add anything to the discussion as it would not change the
comparison we make in Section 2.2.

142 A. Casas, M. Carro, and M.V. Hermenegildo

Tfj2 = max(Ta, Tc) + max(Tb, Td) (2)

Comparing the quality of the annotations in Figure 2(a) and Figure 2(b) boils
down to finding out whether it is possible to show that Tfj1 < Tfj2 or the other
way around. It turns out that they are non-comparable. In fact:

– Tfj1 < Tfj2 holds if, for example, Ta + Tb < Tc, Td < Tb, and then Tfj2 =
Tb + Tc, Tfj1 = Td + Tc, and

– Tfj2 < Tfj1 holds if, for example, Tc ≤ Ta, Td ≤ Tb, and then Tfj1 =
Ta + Tb + Td, Tfj2 = Ta + Tb.

Several annotation algorithms have been proposed so far [22,4] which use the
&/2 operator as the basic construction to express parallelism between goals.
These annotators produce clauses that are parallelized differently, such as those
in Figure 2. It is in principle possible to statically decide (or, at least, approxi-
mate) whether some annotation is better than some other, for example by using
the number of goals annotated for parallelism in a clause or, more interestingly,
by using information regarding the expected runtime of goals (see, e.g., [21,19]
and its references). However, finding an optimal solution is a computationally
expensive combinatorial problem [22] and, in practice, annotators use heuristics
which may be more or less appropriate in concrete cases.

2.2 Parallelization with Finer Goal-Level Operators

It has been observed [4,5] that more basic constructions can be used to represent
and-parallelism by using two operators, &>/2 and <&/1, defined as follows:

Definition 1. G &> H schedules goal G for parallel execution and continues ex-
ecuting the code after G &> H. H is a handler which contains (or points to) the
state of goal G.

Definition 2. H <& waits for the goal associated with H to finish. After that
point any bindings made by G are available to the executing thread.

With the previous definitions, the &/2 operator can be written as
A & B :- A &> H, call(B), H <&. This indicates that any parallelization per-
formed using &/2 can be made using &>/2 and <&/1 without loss of parallelism.
We will term these operators dep-operators henceforth.

p(X, Y, Z) :-
c(Y) &> Hc,
a(X, Z),
b(X) &> Hb,
Hc <&,
d(Y, Z),
Hb <&.

Fig. 3. dep-operator-annotated clause

Two motivations justify the use
of these operators instead of &/2.
Firstly, their implementation is (in
our experience) actually easier to
devise and maintain than the mono-
lithic &/2 [8], and, secondly, the dep-
operators allow more freedom to the
annotator (and to the programmer, if
parallel code is written by hand) to

Annotation Algorithms for Unrestricted Independent And-Parallelism 143

express data dependencies and, therefore, to extract more potential parallelism.
We will now illustrate this last point (the former is out of our current scope).

Figure 3 shows an annotation of our running example using dep-operators.
Note that this code allows executing in parallel a/2 with c/1, b/2 with c/1, and
b/1 with d/2. The execution time of p/3, based on that of the individual goals,
is:

Tdep = max(Ta + Tb, Td + max(Ta, Tc)) (3)

If we compare expression (3) with expressions (1) and (2), it turns out that:

– It is possible that Tdep < Tfj1, Tdep < Tfj2, Tdep = Tfj1, and Tdep = Tfj2

(possibly with different lengths for every goal in each case).
– It is not possible that Tdep > Tfj1 or that Tdep > Tfj2.

This means that the annotation in Figure 3 cannot be worse than those in
Figure 2, and can perform better in some cases. It is, therefore, a better option
than any of the others, assuming no preparation / startup time for the parallel
goals in either case.

In addition to these basic operators, other specialized versions can be defined
and implemented in order to increase performance by adapting better to some
particular cases. In particular, it appears interesting to introduce variants for
the very relevant and frequent case of deterministic goals. For this purpose we
propose additionally two new operators: &!>/2 and <&!/1. These specialized
versions do not perform backtracking and do not prepare the execution data
structures to cope with that possibility, which has previously been shown to
result in a significant efficiency increase in the underlying machinery [23].

3 The UOUDG and UUDG Algorithms

In this section we will present two concrete algorithms which generate code
annotated for unrestricted independent and-parallelism (as in Figure 3), starting
from sequential code. The proposed algorithms process one clause at a time
by working on a directed acyclic dependency graph G = (V, E), such as that
in Figure 1, where nodes are associated with body literals (or, as we will see,
sequences thereof) and which represent units of sequential work which cannot be
split. We require that literals which are lexically identical give rise to different
nodes, by, e.g., attaching a unique identifier to them. This is necessary in order
not to lose information when building sets of nodes.

The idea behind the annotation algorithms is to publish goals for parallel
execution as soon as possible and to delay issuing joins as much as possible —
but always respecting the dependencies in the graph (as in Figure 1). Intuitively,
this should maximize the number of goals available for parallel execution. In the
following, both algorithms will use the following auxiliary definitions. G|U will
denote the subgraph (U, E|U) of G in which there are only edges connecting those
nodes in U . The relation (u � v) holds whenever a path from u to v exists. The
auxiliary definition incoming(v, E) = {u | (u, v) ∈ E} denotes the set of nodes

144 A. Casas, M. Carro, and M.V. Hermenegildo

which are connected to some particular node v. Finally, set difference is, as usual,
defined as A \ B = {x | x ∈ A, x /∈ B}.

Note that, as mentioned in Section 2.1, we will consider in this paper only un-
conditional parallelism. However, the algorithms that we describe can be adapted
to deal with conditional parallelism without too much effort.

3.1 Collapsing Mutually Dependent Goals

In order to ensure the correctness of the algorithms in Sections 3.2 and 3.3,
every sequence of mutually dependent goals has to be grouped into a unique
node of the dependency graph before each iteration. Since no parallelism can
be exploited between mutually dependent goals, no parallelism is lost by this
transformation. We will not describe this grouping process here in detail —we
will only sketch the conditions the resulting nodes have to fulfill. We will assume
that an adequate processing is performed at the beginning of each iteration. The
reader is referred to [7] for more precise details.

Let Gr be a sequence v1, . . . , vn of literals. They are said to be mutually
dependent if the following condition holds:

(∀vi, vj ∈ Gr, (vi � vj) ∨ (vj � vi)) ∧
(∀(vi, vj) ∈ E, vi /∈ Gr ⇒ vj /∈ Gr)

In addition, in the case of the UOUDG algorithm, those goals must be consecutive
in the original clause in order to preserve the order of the solutions.

Example 1. Suppose the following clause:

p:- a(X), b(X), c(X), d(Y), e(Y), f(X, Y).

The sequences 〈a/1, b/1, c/1〉 and 〈d/1,e/1〉 contain mutually dependent lit-
erals in the clause which have a single outgoing dependency on f/2, and therefore
they can be grouped to form a graph of three nodes. Every one of these sequences
of literals can, for efficiency reasons, be folded into a unique predicate in order
to avoid meta-interpretation of sequential conjunctions.

3.2 Order-Preserving Annotation: The UOUDG Algorithm

Algorithm 1 parallelizes a clause while preserving the order of the solutions
by respecting the relative order of literals in the original clause. In order to
keep track of that order, we assume that there is a relation ≺ on the literals
Li of the body of every clause H :- L1, L2, . . . , Lk−1, Lk such that Li ≺ Lj iff
i < j. Additionally, we assume that there is a partial function pred defined as
pred(Li+1) = Li, i.e., the literal at the left of some other literal in a clause. We
assume ≺ and pred are suitably extended to the nodes of the graph.2

2 Note, also, that the graph edges must respect the ≺ relation: (u, v) ∈ E ⇒ u ≺ v.
The graph would have been incorrectly generated otherwise.

Annotation Algorithms for Unrestricted Independent And-Parallelism 145

Algorithm: UOUDG(G, Pub)

Input : (1) A directed acyclic graph G = (V, E).
(2) A set of already forked goals.

Output: A clause parallelized in unrestricted and fashion in which the order of
the solutions in the original clause is preserved.

begin
if V = ∅ then return (true)
else

Indep ← {v | v ∈ V, incoming(v, E) = ∅};
Dep ← {(v, Iv) | v ∈ V, Iv = incoming(v, E), Iv �= ∅, Iv ⊆ Indep};
if Dep = ∅ then

(pvt ,Join) ← (u, V) s.t. ∀(w ∈ (V \ {u})) . w ≺ u;
else

(pvt ,Join) ←
(u, S) s.t. (u, S) ∈ Dep ∧ ∀((w,D) ∈ (Dep \ {(u, S)})) . u ≺ w;

end
Seq ← {v | v ∈ (Indep \ Pub), (v,pvt) ∈ E, v = pred(pvt)};
Fork ← {v | v ∈ (Indep \ Pub), v ≺ pvt} \ Seq ;
Join ← Join \ Seq ;
Pub ← Pub ∪ Fork ∪ Seq ;
G ← G|(V \Join)\Seq;
return (gen body(Fork, Seq, Join, ∅), UOUDG(G, Pub));

end
end

Algorithm 1. UOUDG annotation algorithm

At every recursion step, new nodes (i.e., literals) in the graph are selected to
be published, joined, and executed sequentially. Subsequent iterations proceed
with a simplified graph in which the literals which have been joined and executed
sequentially, together with their outgoing edges, have been removed. The set
of goals which have already been published is kept in a separate argument to
schedule goals for parallel execution only once.

Two sets are key in each iteration: Indep, which contains the sources (i.e., all
vertices without incoming edges in the current graph, which can therefore be
published), and Dep, which contains tuples (v, Iv) where, for each non-source
vertex v which can be reached from source vertices only, Iv is the set of source
vertices (Iv ⊆ Indep) on which v depends. I.e., Iv is the set of vertices to be
joined before v can start.

Also, pvt is the pivot vertex which will be used to decide which nodes are
to be joined, taking into account that we do not want to change the order of
solutions. If there are no Dep nodes, then all the remaining literals are already
independent and we can join up to the rightmost literal in the clause. Otherwise,
we select the leftmost node among those which have dependencies which can be
fulfilled in one step. These dependencies are readily available in Dep. Note that
as we select the leftmost node among those which can be joined, we are delaying
as much as possible joining nodes —or, alternatively, we are performing in every
step only the joins which are needed to continue one more step. This is aimed
at maximizing the number of goals being executed in parallel at any moment.

146 A. Casas, M. Carro, and M.V. Hermenegildo

It is possible for a literal to be scheduled to be forked and then immediately
joined. In order to detect these situations, which in practice would cause unnec-
essary overhead, we select (in Seq) the literal (only one) to which this applies,
and it is not taken into account for the set of Forked literals and removed from
the set of the Joined literals.

The algorithm then continues outputting a parallelized expression (returned
by gen body, Algorithm 3) composed with the parallelization of a simplified
graph, generated by a recursive call. Algorithm 3 is able to use determinism
information, if available, to reorder goals. Since Algorithm 1 preserves the order
of solutions, we do not use this capability at the moment. Therefore an empty
set is passed as determinism data and we define the function det(Lit, DetInfo)
(used by Algorithm 3) to return false if DetInfo = ∅, thus safely assuming
non-determinism.

Termination can be proved based on the following observation: G is a finite
graph and it is simplified in each iteration provided Join or Seq are non-empty.
But Join is always non-empty because it is either V (which is non-empty) when
Dep = ∅ or else it is the second component of a tuple in Dep when Dep
= ∅, and
this component is by definition non-empty. Note that we are not using acyclicity
to prove termination. However, all input graphs will be acyclic by definition.

3.3 Non Order-Preserving Annotation: The UUDG Algorithm

Algorithm 2 follows the same idea underlying Algorithm 1: publish early and join
late. However, it has more freedom to publish goals, since the order of solutions
does not need to be preserved. This is implemented by selecting, among the sets
of goals which can be joined at every moment, the one with the lowest cardinality
—i.e., we join as few goals as possible, thus postponing the rest of the joins as
much as possible, in order to exploit more parallelism. This is taken care of by
min card(S) = min({|s| | s ∈ S}, which returns the size of the smallest set in S.

Note that a random selection from a set is done at two points. Data regarding,
e.g., the relative run time of goals would allow us to take a more informed
decision and therefore precompute a perhaps better scheduling. Since we are not
using this information here, we just pick any available goal to join / execute
sequentially.

Algorithm 2 uses Algorithm 3 again to output a parallelized clause. In this
case Algorithm 3 makes use of determinism information as follows:

– Since we already have the possibility of switching goals around, we try to
minimize relaunching goals which are likely to be executed in parallel by
forking deterministic goals first.

– Additionally, when a goal is known to have exactly one solution, we can use
specialized versions of the dep-operators [8] which do not need to perform
bookkeeping for backtracking (always complex in parallel implementations),
and are thus more efficient.

This program information can often be automatically inferred by the abstract
interpretation-based determinism analyzer in CiaoPP [18], and is provided as

Annotation Algorithms for Unrestricted Independent And-Parallelism 147

Algorithm: UUDG(G, Pub, ID)

Input : (1) A directed acyclic graph G = (V, E). (2) A set of goals already
forked. (3) Determinacy information.

Output: An unrestricted parallelized clause in which the order of the solutions
in the original clause needs not be preserved.

begin
if V = ∅ then return (true);
else

Indep ← {v | v ∈ V, incoming(v, E) = ∅};
Dep ← {Iv | v ∈ V, Iv = incoming(v, E), Iv �= ∅, Iv ⊆ Indep};
if Dep = ∅ then

SS ← ∅;
Join ← V ;

else
SS ← {I | I ∈ Dep, |I | = min card(Dep)};
Join ← s s.t. s ∈ SS ; /* s any element from SS */

end
if (Join ∩ (Indep \ Pub)) = ∅ then

Seq ← ∅;
else

Seq ← {v} s.t. v ∈ (Join ∩ (Indep \ Pub)) ; /* v any element */
end
Fork ← Indep \ (Pub ∪ Seq);
Join ← Join \ Seq ;
Pub ← Pub ∪ Fork ∪ Seq ;
G ← G|(V \Join)\Seq;
return (gen body(Fork, Seq, Join, ID), UUDG(G, Pub, ID));

end
end

Algorithm 2. UUDG annotation algorithm

input to the proposed annotators. Alternatively, this information can be stated
by the programmer via assertions [13].

Example 2 (UUDG Annotation). In order to illustrate how the UUDG algorithm
works, Table 1 shows the results obtained at each of the iterations of the paral-
lelization process for the p/3 predicate introduced in Section 2.1. Columns are
labeled with the first character of each of the variables they represent. Note
that in the first algorithm step, both a and c are candidates for parallel execu-
tion (they are in Indep). However, as a has to be joined too (it is necessary to
continue executing either b or d) it is selected to be sequentially executed.

Further examples and the total correctness proofs of both the UUDG and UOUDG
algorithms can be found in [7].

4 Performance Evaluation

Our annotation algorithms have been integrated in the Ciao/CiaoPP system [13].
Information gathered by the analyzers on variable sharing, groundness, and

148 A. Casas, M. Carro, and M.V. Hermenegildo

Algorithm: gen body(Fork, Seq, Join, ID)

Input : (1) A set of vertices to be forked. (2) A set of vertices to be
sequentialized. (3) A set of vertices to be joined. (4) Determinacy
information.

Output: A parallelized sequence of literals Exp.
begin

Exp ← (true);
ForkDet ← {g | g ∈ Fork, det(g, ID)};
ForkNonDet ← {g | g ∈ Fork,¬det(g, ID)};
JoinDet ← {g | g ∈ Join, det(g, ID)};
JoinNonDet ← {g | g ∈ Join,¬det(g, ID)};
forall vi ∈ ForkDet do Exp ← (Exp, vi &!> Hvi);
forall vi ∈ ForkNonDet do Exp ← (Exp, vi &> Hvi);
if Seq = {v} then Exp ← (Exp, v);
forall vi ∈ JoinDet do Exp ← (Exp, Hvi <&!);
forall vi ∈ JoinNonDet do Exp ← (Exp, Hvi <&);
return Exp;

end
Algorithm 3. Determinism-aware generation of a parallel body

Table 1. Iterations of the UUDG algorithm when parallelizing p/3

G=(V,E) I D J S F J\S P Parallel Code

({a, b, c, d},{(a, b), (a, d), (c, d)}) ∅ p(X,Y,Z) :-
({a, b, c, d},{(a, b), (a, d), (c, d)}) {a, c} {b, d} {a} {a} {c} ∅ {a, c} c(Y) &> Hc, a(X,Z),

({b, c, d},{(c, d)}) {b, c} {d} {c} ∅ {b} {c} {a, b, c} b(X) &> Hb, Hc <&,
({b, d},∅) {b, d} ∅ {b, d} {d} ∅ {b} {a, b, c, d} d(Y,Z), Hb <&.

(∅,∅)

freeness is used to determine goal independence, using the libraries available
in CiaoPP. Determinism is used in the annotators as described previously.

As execution platform we have used a high level implementation of the proposed
parallelism primitives [8], which we have developed as an extension of the Ciao sys-
tem. This implementation is an evolution and simplification of [12] which is based
on raising the level of certain components to the level of the source language and
keeping only some selected operations (related to thread handling, locking, etc.)
at a lower level. This approach does not eliminate altogether modifications to the
abstract machine, but it greatly simplifies them. It should be noted however that
the dep-operators do not assume any particular architecture: while our current
implementation and all the performance results were obtained on a multicore ma-
chine, the techniques presented can be also applied in distributed memory ma-
chines —and in fact, the first prototype implementation of the dep-operators [5,4]
was actually made with a distributed environment in mind.

We have evaluated the impact of the different annotations on the execution
time by running a series of benchmarks (briefly described in Table 2) in parallel.
Table 3 shows the speedups obtained with respect to the sequential execution,
i.e., they are actual speedups,3 when using from 1 to 8 threads. The machine we
3 This is the reason why some speedups start below 1 for, e.g., one thread.

Annotation Algorithms for Unrestricted Independent And-Parallelism 149

Table 2. Benchmark programs

AIAKL An abstract interpreter for the AKL language.
FFT An implementation of the Fast Fourier transform.
FibFun A version of Fib written in functional notation.
Hamming A program to compute the first N Hamming numbers.
Hanoi A program to compute movements to solve the well-known puzzle.
Takeuchi Computes the Takeuchi function.
WMS2 A scheduler assigning a number of workers to a series of jobs.

Table 3. Speedups for several benchmarks and annotators

Benchmark Annotator
Number of threads

1 2 3 4 5 6 7 8

AIAKL

UMEL 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98
UOUDG 0.97 1.55 1.48 1.49 1.49 1.49 1.49 1.49
UDG 0.97 1.77 1.66 1.67 1.67 1.67 1.67 1.67
UUDG 0.97 1.77 1.66 1.67 1.67 1.67 1.67 1.67

FFT

UMEL 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37
UOUDG 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37
UDG 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37
UUDG 0.98 1.82 2.31 3.01 3.12 3.26 3.39 3.63

FibFun

UMEL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UOUDG 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57
UDG 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UUDG 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57

Hamming

UMEL 0.93 1.13 1.52 1.52 1.52 1.52 1.52 1.52
UOUDG 0.93 1.15 1.64 1.64 1.64 1.64 1.64 1.64
UDG 0.93 1.13 1.52 1.52 1.52 1.52 1.52 1.52
UUDG 0.93 1.15 1.64 1.64 1.64 1.64 1.64 1.64

Hanoi

UMEL 0.89 0.98 0.98 0.97 0.97 0.98 0.98 0.99
UOUDG 0.89 1.70 2.39 2.81 3.20 3.69 4.00 4.19
UDG 0.89 1.72 2.43 3.32 3.77 4.17 4.41 4.67
UUDG 0.89 1.72 2.43 3.32 3.77 4.17 4.41 4.67

Takeuchi

UMEL 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63
UOUDG 0.88 1.62 2.17 2.64 2.67 2.67 2.67 2.67
UDG 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63
UUDG 0.88 1.62 2.39 3.33 4.04 4.47 5.19 5.72

WMS2

UMEL 0.85 0.81 0.81 0.81 0.81 0.81 0.81 0.81
UOUDG 0.99 1.09 1.09 1.09 1.09 1.09 1.09 1.09
UDG 0.99 1.01 1.01 1.01 1.01 1.01 1.01 1.01
UUDG 0.99 1.10 1.10 1.10 1.10 1.10 1.10 1.10

used is a Sun UltraSparc T2000 (a Niagara) with 8 4-thread cores.4 The fork-join
annotators we chose to compare with are MEL [22] (which preserves goal order
4 We did not use more than 8 threads (1 in each core) since otherwise, and due to

access conflicts to shared units, speedups can be significantly sublinear even for
completely independent tasks.

150 A. Casas, M. Carro, and M.V. Hermenegildo

and tries to maximize the length of the parallel expressions) and UDG [4] (which
can reorder goals). MEL can add runtime checks to decide dynamically whether
to execute or not in parallel. In order to make the annotation unconditional
(as the rest of the annotators we are dealing with), we simply removed the
conditional parallelism in the places where it was not being exploited. This is
why it appears in Table 3 under the name UMEL.

All the benchmarks executed were parallelized automatically by CiaoPP,
starting from their sequential code. Since UOUDG and UUDG can improve the
results of fork-join annotators only when the code to parallelize has at least a cer-
tain level of complexity, not all benchmarks with (independent) parallelism can
benefit from using the dep-operators. Additionally, comparing speedups obtained
with programs parallelized using order-preserving and non-order-preserving an-
notators is not completely meaningful.

Note that in this paper we are not focusing on the speedups themselves.
Although of utmost practical interest, raw speed is very connected with the
implementation of the underlying parallel abstract machine, and improvements
on it can be expected to uniformly affect all parallelized programs. Rather, our
main focus of attention is in the comparison among the speedups obtained using
different annotators.

A first examination of the experimental results in Table 3 allows inferring
that in no case is UUDG worse than any other annotator, and in no case is
UOUDG worse than (U)MEL. They should therefore be the annotators of choice
if available. Besides, there are cases where UOUDG is better than UDG, and the
other way around, which is in accordance with the non-comparable nature of
these two algorithms.

Among the cases in which a better speedup is obtained by some of the
U(O)UDG annotators, improvements range between “no improvement” (because
no benefit is obtained for some particular cases and combinations of annotators)
to an increase of 757% in speedup, with several other stages in between. Also,
it is worth pointing out that the speedup does not stabilize in any benchmark
(at least in a sizable amount) as the number of threads increases; moreover, in
some cases the difference in speedup between the restricted and the unrestricted
versions grows substantially with the number of threads. This can (clearly) be
seen in, e.g., Figure 4(b).

Finally, we would like to comment specially on three benchmarks. FibFun
is the result of parallelizing a definition of the Fibonacci numbers written using
the functional notation capabilities of Ciao [6]. Because of the order in which
code is generated in the (automatic) translation into Prolog, the result is only
parallelizable by UOUDG and UUDG, hence the speedup obtained in this case.
The case of Hanoi is also interesting, as it is the first example in [22]: in the arena
of order-preserving parallelizers, UOUDG can extract more parallelism than MEL
for this benchmark. Lastly, the Takeuchi benchmark has a relatively small loop
which only allows parallelizing with a simple &/2. However, by unrolling one
iteration the resulting body has dependencies which are complex enough to take
advantage of the increased flexibility of the dep-operator annotators.

Annotation Algorithms for Unrestricted Independent And-Parallelism 151

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 1 2 3 4 5 6 7 8

MEL
UDG

UOUDG
UUDG

(a) Hanoi

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 1 2 3 4 5 6 7 8

MEL
UDG

UOUDG
UUDG

(b) Takeuchi

Fig. 4. Speedups with different annotations for Hanoi and Takeuchi

5 Conclusions

We have proposed two annotation algorithms which perform a source-to-source
transformation of a logic program into an unrestricted independent and-parallel
version of itself. Both algorithms rely on the use of more basic high-level primi-
tives than the fork-join operator, and differ on whether the order of the solutions
in the original program must be preserved or not. We have implemented the pro-
posed algorithms in the CiaoPP system, which infers automatically groundness,
sharing, and determinacy information, used to simplify the initial dependency
graph. The results of the experiments performed show that, although the paral-
lelization provided by the new annotation algorithms is the same in quite a few
of the traditional parallel benchmarks, it is never worse and in some cases it is
significantly better. This supports the observations made based on the expected
performance of the annotations. We have also noticed that the benefits are larger
for programs with high numbers of goals in their clauses, since more complex
graphs make the ability to exploit unrestricted parallelism more relevant.

Acknowledgments. This work was funded in part by Ministry of Education
and Science (MEC) project TIN2005-09207-C03 MERIT-COMVERS, by Min-
istry of Industry (MIN) PROFIT project FIT-350400-2006-44 GGCC, by Madrid
Regional Government (CM) project S-0505/TIC/0407 PROMESAS, and by IST
program of the European Commission FP6 FET project IST-15905 MOBIUS.
Manuel Hermenegildo and Amadeo Casas were also funded in part by the Prince
of Asturias Chair in Information Science and Technology at UNM.

References

1. Ali, K.A.M., Karlsson, R.: The Muse Or-Parallel Prolog Model and its Perfor-
mance. In: 1990 North American Conference on Logic Programming, pp. 757–776.
MIT Press, Cambridge (1990)

2. Bueno, F., de la Banda, M.G., Hermenegildo, M.: Effectiveness of Abstract Inter-
pretation in Automatic Parallelization: A Case Study in Logic Programming. ACM
Transactions on Programming Languages and Systems 21(2), 189–238 (1999)

152 A. Casas, M. Carro, and M.V. Hermenegildo

3. Bueno, F., de la Banda, M.G., Hermenegildo, M.: Effectiveness of Abstract Inter-
pretation in Automatic Parallelization: A Case Study in Logic Programming. ACM
TOPLAS 21(2), 189–238 (1999)

4. Cabeza, D.: An Extensible, Global Analysis Friendly Logic Programming Sys-
tem. PhD thesis, Universidad Politécnica de Madrid (UPM), Facultad Informatica
UPM, 28660-Boadilla del Monte, Madrid-Spain (August 2004)

5. Cabeza, D., Hermenegildo, M.: Implementing Distributed Concurrent Constraint
Execution in the CIAO System. In: Proc. of the AGP 1996 Joint conference on
Declarative Programming, San Sebastian, Spain, U. of the Basque country, pp.
67–78 (July 1996), http://www.cliplab.org/

6. Casas, A., Cabeza, D., Hermenegildo, M.: A Syntactic Approach to Combining
Functional Notation, Lazy Evaluation and Higher-Order in LP Systems. In: Hagiya,
M., Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 146–162. Springer, Hei-
delberg (2006)

7. Casas, A., Carro, M., Hermenegildo, M.: Automatic Unrestricted Independent
And-Parallelism in Logic Programs. Technical Report CLIP11/2007.0, Technical
University of Madrid (UPM), School of Computer Science, UPM (December 2007)

8. Casas, A., Carro, M., Hermenegildo, M.: Towards a High-Level Implementation
of Execution Primitives for Non-restricted, Independent And-parallelism. In: War-
ren, D.S., Hudak, P. (eds.) 10th International Symposium on Practical Aspects of
Declarative Languages (PADL 2008). LNCS, vol. 4902, Springer, Heidelberg (2008)

9. Gupta, G., Hermenegildo, M., Pontelli, E., Santos-Costa, V.: ACE: And/Or-
parallel Copying-based Execution of Logic Programs. In: International Conference
on Logic Programming, pp. 93–110. MIT Press, Cambridge (1994)

10. Gupta, G., Pontelli, E., Ali, K., Carlsson, M., Hermenegildo, M.: Parallel Execution
of Prolog Programs: A Survey. ACM TOPLAS 23(4), 472–602 (2001)

11. Hermenegildo, M.: Parallelizing Irregular and Pointer-Based Computations Auto-
matically: Perspectives from Logic and Constraint Programming. Parallel Com-
puting 26(13–14), 1685–1708 (2000)

12. Hermenegildo, M., Greene, K.: The &-Prolog System: Exploiting Independent And-
Parallelism. New Generation Computing 9(3,4), 233–257 (1991)

13. Hermenegildo, M., Puebla, G., Bueno, F., López Garćıa, P.: Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming 58(1–2), 115–140
(2005)

14. Hermenegildo, M., Rossi, F.: Strict and Non-Strict Independent And-Parallelism
in Logic Programs: Correctness, Efficiency, and Compile-Time Conditions. Journal
of Logic Programming 22(1), 1–45 (1995)

15. Hermenegildo, M., Warren, R.: Designing a High-Performance Parallel Logic Pro-
gramming System. Computer Architecture News, Special Issue on Parallel Sym-
bolic Programming 15(1), 43–53 (1987)

16. Janson, S.: AKL. A Multiparadigm Programming Language. PhD thesis, Uppsala
University (1994)

17. Karp, A.H., Babb, R.C.: A Comparison of 12 Parallel Fortran Dialects. In: IEEE
Software (September 1988)

18. López-Garćıa, P., Bueno, F., Hermenegildo, M.: Determinacy Analysis for Logic
Programs Using Mode and Type Information. In: Etalle, S. (ed.) LOPSTR 2004.
LNCS, vol. 3573, pp. 19–35. Springer, Heidelberg (2005)

19. López-Garćıa, P., Hermenegildo, M., Debray, S.K.: A Methodology for Granularity
Based Control of Parallelism in Logic Programs. Journal of Symbolic Computation,
Special Issue on Parallel Symbolic Computation 21(4–6), 715–734 (1996)

http://www.cliplab.org/

Annotation Algorithms for Unrestricted Independent And-Parallelism 153

20. Lusk, E., et al.: The Aurora Or-Parallel Prolog System. New Generation Comput-
ing 7(2,3) (1990)

21. Mera, E., López-Garćıa, P., Puebla, G., Carro, M., Hermenegildo, M.: Combining
Static Analysis and Profiling for Estimating Execution Times. In: Hanus, M. (ed.)
PADL 2007. LNCS, vol. 4354, pp. 140–154. Springer, Heidelberg (2006)

22. Muthukumar, K., Bueno, F., de la Banda, M.G., Hermenegildo, M.: Automatic
Compile-time Parallelization of Logic Programs for Restricted, Goal-level, Inde-
pendent And-parallelism. Journal of Logic Programming 38(2), 165–218 (1999)

23. Pontelli, E., Gupta, G., Tang, D., Carro, M., Hermenegildo, M.: Improving the
Efficiency of Nondeterministic And–parallel Systems. The Computer Languages
Journal 22(2/3), 115–142 (1996)

24. Santos-Costa, V., Warren, D.H.D., Yang, R.: Andorra-I: A Parallel Prolog System
that Transparently Exploits both And- and Or-parallelism. In: Proceedings of the
3rd. ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, pp. 83–93. ACM, New York (April1991) (SIGPLAN Notices, vol. 26(7), July
1991)

25. Shen, K.: Overview of DASWAM: Exploitation of Dependent And-parallelism.
Journal of Logic Programming 29(1–3), 245–293 (1996)

A Flexible, (C)LP-Based Approach to the

Analysis of Object-Oriented Programs�

Mario Méndez-Lojo1, Jorge Navas1, and Manuel V. Hermenegildo1,2

1 University of New Mexico, USA
2 Technical University of Madrid, Spain

Abstract. Static analyses of object-oriented programs usually rely on
intermediate representations that respect the original semantics while
having a more uniform and basic syntax. Most of the work involving
object-oriented languages and abstract interpretation usually omits the
description of that language or just refers to the Control Flow Graph
(CFG) it represents. However, this lack of formalization on one hand re-
sults in an absence of assurances regarding the correctness of the trans-
formation and on the other it typically strongly couples the analysis to
the source language. In this work we present a framework for analysis of
object-oriented languages in which in a first phase we transform the in-
put program into a representation based on Horn clauses. This facilitates
on one hand proving the correctness of the transformation attending to
a simple condition and on the other allows applying existing analyzers
for (constraint) logic programming to automatically derive a safe ap-
proximation of the semantics of the original program. The approach is
flexible in the sense that the first phase decouples the analyzer from most
language-dependent features, and correct because the set of Horn clauses
returned by the transformation phase safely approximates the standard
semantics of the input program. The resulting analysis is also reasonably
scalable due to the use of mature, modular (C)LP-based analyzers. This
allows us to report good results for medium-sized programs.

1 Introduction

Analysis of object-oriented languages using abstract interpretation [9] is cur-
rently the subject of significant research (see, e.g., [21] and its references). The
abstract interpretation approach brings an interesting and useful combination of
characteristics: it is automatic and practical, producing useful results for a good
number of applications, while at the same time being rigorous and semantics-
based. The gap between programs and semantics is greater in the case of object-
oriented languages than in, for example, declarative languages. For this reason,
� This work was supported in part by the Prince of Asturias Chair in Information

Science and Technology at UNM, the Information Society Technologies program of
the European Commission, Future and Emerging Technologies under the IST-15905
MOBIUS project, the Spanish Ministry of Education under the TIN-2005-09207
MERIT project, and the Madrid Regional Government under the S-0505/TIC/0407
PROMESAS program.

King, A. (Ed.): LOPSTR 2007, LNCS 4915, pp. 154–168, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Flexible, (C)LP-Based Approach to the Analysis 155

static analyses of object-oriented programs usually rely on intermediate lan-
guages that respect the original semantics while having a more uniform and
basic syntax (e.g., block-based representations) and a more declarative seman-
tics (e.g., static single assignment transformations). Some significant concrete
examples which have been proposed of such intermediate representations for
object-oriented programs are Jimple [32] for Java or BoogiePL [10] for .NET.

In this paper we propose the use of a Horn clause-based representation as
an intermediate language. Our objective is twofold. On one hand we would like
to take advantage of existing analyzers for (constraint) logic programs. On the
other, we want to be able to offer assurances that the output of the process
of transformation into the intermediate representation safely approximates the
standard semantics of the input program. Performing the analysis using logic
programming tools offers a number of advantages, such as the relative maturity
and sophistication of the solutions available, like abstract interpreters (which
offer parametric, efficient, and modular fixpoint algorithms) and verifiers (see,
e.g., [15,12] and their references). A second strength of our transformational
approach is that the framework can be easily adapted to the analysis of other
languages without having to redefine the fixpoint algorithm [24]. In fact, us-
ing the intermediate representation that we propose, from the analyzer point of
view an object-oriented program is indistinguishable from, e.g., a Prolog one (al-
though of course different abstract domains and definitions of pseudo-builtins are
used). This brings in the additional advantage of being able to analyze multiple
languages within the same framework.

We start by describing our methodology (Section 2) and our approach to en-
suring correctness using some fundamental parts of the transformation of Java
programs into our representation as examples (Section 3). Section 4 shows how
analysis of specific aspects of Java can be optimized using metainformation. We
then illustrate the application of our approach to other languages, such as C#
(Section 5). We also report on an implementation of the ideas presented in this
paper using the abstract interpretation-based CiaoPP framework [15]. It can
be configured for many different analyses by simply plugging the corresponding
abstract domain. The examples try to detect null pointer dereferences (nullity
analysis) and eliminate dynamic dispatch (class analysis) in Java programs. The
experiments in Section 6 show that the technique scales well in non trivial sce-
narios, and results in smaller analysis times than similar previous work. Related
abstract interpretation-based frameworks, and how they differ from ours, are
discussed in Section 7, and Section 8 presents our conclusions.

2 Methodology: The Transformational Approach

Our framework is composed of a front-end preprocessor and a back-end analyzer,
as shown in Figure 1. The preprocessor transforms an input in Java source for-
mat into a set of Horn clauses that represent a safe approximation of its standard
semantics (Sect 3). Sometimes the source code is not available, so we also accept
Java bytecode as a valid input format. In this case the (de)compilation from

156 M. Méndez-Lojo, J. Navas, and M.V. Hermenegildo

AnalysisTransformation

Java parser (in Ciao)

soot + Ciao

transform.

javac

Java bytecode

Java Source

Fixpoint

algorithm

Domains

Pre/Post pairs
Prog. Point Info

...

C#

(CiaoPP)

Horn clauses
(including
metainf.)

Fig. 1. Transformation and analysis pipeline

bytecode to Horn clauses is based on a postprocessing of the Jimple represen-
tation returned by the Soot [32] tool. It is beyond the scope of this paper to
provide a detailed description of this particular transformation; the reader is
referred to [24] (which presents our transformation and a specific fixpoint algo-
rithm for analysis) for details. In both cases the same subset of the language
is covered by the framework. Our ultimate objective is to support the full Java
language but the current implementation has some limitations: it does not sup-
port dynamic loading of classes, threads, or runtime exceptions. Also, analysis
of the JDK libraries is done under worst-case assumptions.

The resulting Horn-clause intermediate representation is then analyzed using
the CiaoPP framework [15] and benefits from its advanced features: efficient
computation of fixpoints using memoization, context-sensitivity, modularity, etc.
The programmer needs only to implement (in Ciao [6], or in plain Prolog) the
particular abstract domain of interest, which includes also defining the abstract
meaning of a set of “built-in” predicates that represent the language-dependent
semantics of the basic operations of the source language. On the other hand, our
approach does liberate the designer of an analysis from the burden of coding a
fast, reliable, and efficient abstract interpretation platform. Analysis results are
given in the standard form (p, σ), where p uniquely identifies a program point
and σ is an abstract state which safely approximates all the possible states
at that program point during runtime. Metainformation computed during the
transformation process allows relating those line numbers with the ones of the
original bytecode or source program, making it possible to reflect back the results
on the original program text (as JML-like assertions [18]), pinpoint errors in the
original program, or implement compiler optimizations.

Other languages can be incorporated into the framework (i.e., analyzed) by
providing a correct transformation for them. For example, support for other
object-oriented languages like C#, that share many syntactic and semantics
features with Java, is easily achievable as illustrated in Section 5. In addition,

A Flexible, (C)LP-Based Approach to the Analysis 157

programs written in Ciao, which CiaoPP deals with natively, are obviously also
accepted by the system as input.

3 Overview of the Semantic Basis and Correctness of the
Transformation Phase

Our Horn clause representation of a Java program is basically an unfolded,
three-address version of the source where the operational semantics of some in-
structions is made explicit. The transformed code is denoted by the c subindex:
for example, the result of transforming a virtual invocation v.m(v1, . . . , vn) is
vc.mc(v1c , . . . , vnc) = v.mc(v1, . . . , vn), since variable expressions are not trans-
formed (vc = v).

Correctness of the transformation requires that the original program prog
be emulated by progc thus C�prog� = C�progc�, where the semantics operator
C�� : com �→ (D �→ D) takes as input a command com and a concrete state,
and returns the output state. The operator has been defined in [14] and (from a
denotational point of view) in [2,29]. Correctness of preprocessing and analysis
requires that if the Horn clause program is safely approximated (using a given
abstract domain) by the analysis, so is the original: C∗�prog� = C∗�progc�. The
C∗�� : com �→ (D∗ �→ D∗) operator is the abstract counterpart of C��.

We will take a slightly different approach by interpreting Java semantics as a
particular case of SLD [17] resolution, in which the computation rule in use is left-
to-right (commands are executed in the order they appear in the program) and
the search rule used to determine the target method in an invocation in principle
does not really matter, since execution of the Java program is deterministic and
therefore for any literal there is exactly one clause that unifies with it at run
time. Therefore, if S�� : com �→ (D �→ P(D)) is the SLD semantics operator,
the condition S�prog� = {C�prog�} ensures S∗�prog� = C∗�prog�. Again, S∗�� :
com �→ (D∗ �→ D∗) is the (collecting) abstract version of S��.

This formalization is useful since it helps understanding the Java source as a
set of Horn clauses (methods) composed by zero or more goals, the commands.
It is also helpful because our transformation introduces new clauses such that
now more than one clause might unify with a given literal. This is equivalent
to saying that the execution of the transformed program on some input state
might result in multiple output states, of which one is the unique state that the
original program would return: S�prog� ⊆ S�progc�. An interesting property of
that transformed program is that its abstract semantics S∗�progc� still correctly
approximates that of the original, i.e., S∗�prog� ≤ S∗�progc�. Therefore, all
we have to prove in order to show that the results of the analysis are correct
is that S�prog� ⊆ S�progc� (or C�prog� ∈ S�progc�) holds. Space limitations
prevent us from discussing the whole transformation algorithm and providing
proofs. Instead, we describe and provide a proof sketch for the case of the virtual
invocation expression, which is one of the most complex operations supported.

158 M. Méndez-Lojo, J. Navas, and M.V. Hermenegildo

staticCallSemantics(k$m(v, v1, . . . , vn), σ)

s = signature(call)
body = getBody(k$m, s)
return(bodySemantics(body, σ))

virtualCallSemantics(k?m(v, v1, . . . , vn), σ)

s = signature(call)
c = lookup(runtime class(v), s)
return staticCallSemantics(c$m(v, v1, . . . , vn), σ)

lookup(k, s)
a = k
do

if declares(a, s)
return(a)

a = ancestor(a)

while (true)

compileStaticCall(k$m(v, v1, . . . , vn), progc)

return k$m(v, v1, . . . , vn)

compileVirtualCall(k?m(v, v1, . . . , vn), progc)

s = signature(call)
C = resolve(k, s)
forall c ∈ C add to progc the clause

k$dyn*m(v, v1, . . . , vn) : −
c$m(v, v1, . . . , vn)

return k$dyn*m(v, v1, . . . , vn)

resolve(k, s)

result = ∅
Sub = subclasses(k) ∪ {k}
forall sub ∈ Sub

sk = lookup(sub, s)
result = result ∪ sk

return result

Fig. 2. Standard semantics (left) and transformation (right) of method calls

3.1 Correctness of a Virtual Invocation

The description of the standard semantics in this section is a slightly simplified
version of the more formal specification described in [29]. We distinguish be-
tween two different kinds of invocations: virtual and static. Assume that calls
of the first type have been rewritten as k?m(v, v1, . . . , vn) and the static ones
as k$m(v, v1, . . . , vn) , where k is the declared type of v. Note that we rewrote
the call syntax so the invoked object v is now the first actual parameter. The
main difference between the two is that while in virtual invocations we need to
figure out the particular class of v through a lookup in the class hierarchy, that
operation is unnecessary in static calls since there is only one possible receiver.

In the left column of Figure 2 we present the pseudocode for the semantics
of a static call (here denoted by staticCallSemantics) and a virtual call (here
denoted by virtualCallSemantics). The particular signature of the invocation
has to be calculated in order to distinguish which implementation to choose,
since in Java (as in the Horn clauses) there can be many methods with the same
name and arity, but here they will differ in the type of at least one of the formal
parameters. Also, we will assume that there exists a function runtime class
that returns the runtime type of the object passed as parameter.

We refer to the tuple (v, v1, . . . , vn) as pars. The standard semantics of the call
in the original program is C�k?m(pars)�σ = C�c$m(pars)�σ, where c is the value re-
turned by lookup(runtime class(v), s). The SLD semantics of the transformed
version is S�k?mc(pars)�σ, which the transformation ensures to be S�k$dyn*m
(pars)�σ =

⋃

i S�ci$m(pars)�σ, where ci ∈ resolve(k, s). The correctness con-
dition is now reduced to proving that c is equal to some ci. This is equivalent to
showing that lookup(runtime class(v), s) ∈ resolve(k, s), which can be further
rewritten as lookup(runtime class(v), s)∈ {lookup(sub, s) | sub∈ subclasses
(k) ∪ {k}}. But the runtime type of v can only be k or a subclass of it in a type
safe language as Java, and therefore the condition always holds.

Example 1. Assume a hierarchy of classes like in Figure 3. The root class A
declares a method foo which is further redefined (overwritten) in subclasses B,

A Flexible, (C)LP-Based Approach to the Analysis 159

Y

B

Z

C

A

X

public void foo()

public void foo()

public void foo()

public void foo()

someMethod(){
X v;
...
v.foo();

}

(a) Fragment of the original program

SomeClass$someMethod():-
...
X$dyn*foo(v).

X$dyn*foo(w):-
B$foo(w)

X$dyn*foo(w):-
Z$foo(w).

(b) Fragment of the transformed program

Fig. 3. Transformation of a virtual invocation

C, and Z. If the original program in Figure 3a) contains a virtual invocation
to foo in an instance declared as being of class X, our compiler automatically
transforms it into a call to a new method with two new clauses (methods) that
represent all the possible receiver implementations for the call. Because X is a
direct subclass of B, it can never inherit the original A implementation but only
the B one, represented by the first clause of xdynfoo. Alternatively, any object
of type Y and Z is also of type X and therefore we include a call to the Z version
of foo in the second clause. The C implementation is discarded because of type
incompatibility.

The process described has many interesting properties. First, it is based on
assuming SLD resolution semantics for the transformed Horn clause program.
This allows reusing existing analyzers without having to redefine the abstract
unification operator in order to deal with language-dependent features, as in
the case of virtual invocation. We implemented our Java analyses on top of
the CiaoPP Prolog analyzer [15] without modifying its code, even when specific
abstract domains and “builtin” definitions for Java language constructs had
to be provided. A second strength is that correctness of the transformation
depends only on showing that C�comm� ∈ S�commc� holds for every command
(and expression) in the source language. Although not trivial, the proof can be
slightly modified for similar languages to Java, so neither the compiler nor the
abstract domains need to be completely rewritten. In the case of Ciao, the proof
is trivial since progc = prog.

4 Other (Meta-)Information Added by the
Transformation

The addition of meta-information during the transformation, although not
strictly required, can help both efficiency and full independence from the source

160 M. Méndez-Lojo, J. Navas, and M.V. Hermenegildo

package examples;

public class Vector {

Element first;

public void add(int value){
Element e = new Element();
e.value = value;
Vector v = new Vector();
v.first = e;
append(v);

}
public void append(Vector v){

Element e = first;

if (e == null)
first = v.first;

else{
while (e.next != null)

e = e.next;

e.next = v.first;
}

}
}

class SubVector extends Vector{

public void append(Vector v){
//...

}
}

class ancestor

Vector Object
SubVector Vector
Element Object

method entry

Vector$init y
Vector$add y
Vector$dyn*append y
Vector$append y
Vector$append#1#2 n
Vector$append#3#4 n
SubVector$init y
SubVector$append y
Element$init y

Fig. 4. Vector example: source code and corresponding metainformation

language. In some cases the fixpoint algorithm can be optimized if some char-
acteristics related to the original source are known. In other cases the abstract
domain can use certain information about the program not directly encoded in
the Horn clauses. Both demands are solved via the addition of metainformation
to the transformation. We illustrate this point with the example in Figure 4,
which shows an alternative version of the JDK Vector class. The descendant
SubVector contains an alternative version of the append method. The corre-
sponding Horn clauses (represented as a Control Flow Graph) are shown in
Figure 5. We omitted the constructor (init) clauses for simplicity.

Space reasons prevent us from listing a complete description of the metain-
formation; only hierarchy and method type tables are shown in Figure 4 (such
tables are represented as sets of facts). In the case of the parent-child relations,
the purpose is to provide the abstract domain code with access to the class tree,
the more obvious application being class analysis [3]. The second table contains
a classification for each method, which can be y (entry) or n (internal). It is used
to optimize the performance of the fixpoint engine, avoiding projection and ex-
tension operations [5] (e.g., for blocks that share variable scope with the calling
context, such as conditionals).

An entry method corresponds in the original program to the first clause [14]
of the Java method of the same name and shares its signature, except for an ex-
tra parameter that represents the value returned. The other clauses present in the
Java method are compiled into (components of) internal methods which share the
same set of variables: all the formal parameters and local variables they reference.
Examples of constructions converted into internal clauses are if, while, or for
loops. In the example, we can see how the if (e==null)...elseconditional in the

A Flexible, (C)LP-Based Approach to the Analysis 161

asg(R0_,Vector,R0,Vector)
asg(R1_,Vector,R1,Vector)
gtf(R2,Element,R0_,Vector,first,Element)

Vector$append(Res,R0,R1)

Vector$append#1#2(Res,R0_,R1_,R2,R3,R4,R5)

ne(R4,Element,null,null_type)

Vector$append#3#4(Res,R0_,R1_,R2,R3,R4,R5)

Vector$append#1#2(Res,R0_,R1_,R2,R3,R4,R5)

gtf(R2,Element,R2,Element,next,Element)
SubVector$append(Res,R0,R1)

ne(R2,Element,null,null_type)eq(R2,Element,null,null_type)

Vector$append#3#4(Res,R0_,R1_,R2,R3,R4,R5)

gtf(R4,Element,R2,Element,next,Element)

Vector$append#1#2(Res,R0_,R1_,R2,R3,R4,R5)

eq(R4,Element,null,null_type)

Vector$append#3#4(Res,R0_,R1_,R2,R3,R4,R5)

stf(R0_,Vector,first,Element,R3,Element)
gtf(R3,Element,R1_,Vector,first,Element)

stf(R2,Element,next,Element,R5,Element)

gtf(R5,Element,R1_,Vector,first,Element)

stf(R3,Vector,first,Element,R2,Element)

Vector$dyn*append(Res,R0_,R3)

asg(R3,Vector,R4,Vector)
Vector$<init>#1650(_Void,R4)
new(R4,Vector)
stf(R2,Element,value,int,I0,int)
asg(R2,Element,R1,Element)
Element$<init>(_Void,R1)
new(R1,Element)
asg(R0_,Vector,R0,Vector)

Vector$add(Res,R0,I0)

Vector$append#1#2(Res,R0_,R1_,R2,R3,R4,R5)

tot(R0_, [SubVector])
SubVector$append(Res,R0_,R3)

Vector$dyn*append(Res,R0_,R3)

tot(R0_, [Vector])
Vector$append(Res,R0_,R3)

Vector$dyn*append(Res,R0_,R3)

...

Fig. 5. Call Graph for the example in Figure 4

Vector implementation of append is converted into two different clauses, one for
each branch, which actually share the same name Vector$append#1#2 (Figure 5).
In this case, the internal method is composed of two clauses which are indistin-
guishable from the caller’s point of view, thus causing invocations to the method
to be non-deterministic (i.e., causing the execution of one clause or another). En-
try clauses are marked in gray, internal ones in white; dotted arrows denote non-
deterministic flows while the continuous ones symbolize deterministic calls.

Another flow transformation (extra clauses) tries to expose the internal struc-
ture of some complex Java features, which sometimes encode sophisticated oper-
ations. That is the case of the virtual invocations studied in Section 3. Coming
back to the example in Figure 4, note that the call to append within add is poly-
morphic: it might execute the implementation in Vector or the one in SubVector.
We make this semantics explicit by inspecting the application hierarchy and re-
placing the virtual invocation with a set of resolved calls, one for each possible
implementation. The method acting as a “hub” is called an extra clause; in the
example we have two, Vector$dyn*append, marked in black. They behave in a
very similar way to the conditional discussed previously, since the program flow
might go through two alternative paths (clauses), one for each implementation of
append. Each branch contains a guard (tot, see the first statement in each of the
Vector$dyn*append clauses) listing the acceptable types for the callee.

It is interesting how, in an analogous way to the clause case, we introduced
extra statements to further simplify analysis. For example, the mentioned tot
(type of this) builtin filters the execution of subsequent statements when the class
of the instance is not listed in the set of possibilities; guard statements have a
similar goal in clauses that come from conditional constructions. In Figure 5 the
eq call at the beginning of the leftmost Vector$append#1#2 clause refers to the
condition for executing the first branch, while the ne call contains its negated
version, for the second alternative. Also, those methods that are entry but not
extra contain assignments to shadow variables that simulate the call-by-reference
semantics [24].

162 M. Méndez-Lojo, J. Navas, and M.V. Hermenegildo

public class Lang{

public void foo(Location loc){
String lang = loc.getDefaultLanguage();
...

}
}

class Location {
public String getDefaultLanguage(){

return "English";
}

}

class China extends Location{
public String getDefaultLanguage(){

return "Mandarin";
}

}

class Sichuan extends China{
}

Lang$foo(Res,R0,R1):-
asg(R0_,Lang,R0,Lang),
asg(R1_,Location,R1,Location),
Location$dyn*getDefaultLanguage(R4,R1_),
ret.

Location$getDefaultLanguage(Res,R0):-
asg(R0_,Location,R0,Location),
asg(Res,java.lang.String,"English",java.lang.String),
ret.

China$getDefaultLanguage(Res,R0):-
asg(R0_,China,R0,China),
asg(Res,java.lang.String,"Mandarin",java.lang.String),
ret.

Location$dyn*getDefaultLanguage(Res,R1_):-
tot(R1_, [China,Sichuan]),
China$getDefaultLanguage(Res,R1_).

Location$dyn*getDefaultLanguage(Res,R1_):-
tot(R1_, [Location]),
Location$getDefaultLanguage(Res,R1_).

Fig. 6. Transformation for dynamic dispatch in Java

5 Explicit Semantics in other OO Languages

Our framework can be adapted to other languages apart from Java (and Ciao),
especially for those like C# that share similar syntax and statement semantics
to Java. The examples in Figures 6 and 7 illustrate this point. In Figure 6, the
value returned by the getDefaultLanguage invocation in the foo method re-
turns English if loc has runtime type Location and Mandarin if the runtime
type is China or Sichuan, since this last class inherits the implementation of
getDefaultLanguage from China according to standard Java semantics [14].
The C# language is quite similar in most aspects, but polymorphic invocations
have been further refined (and complicated). In Figure 7 only class China over-
shadows the default definition for the getDefaultLanguage method given in
the superclass; HongKong inherits the Location implementation. Therefore, an
invocation like (new Hong Kong()).getDefaultLanguage() returns English.

When analyzing a virtual invocation like the one in the first line of foo,
we could have implemented internal mechanisms in the analyzer for differen-
tiating the two possible interpretations that the call might have in each lan-
guage. That implies an undesirable, double implementation of either the fix-
point algorithm or the abstract domains, since the analyzer would then be
language-dependent. To bypass this problem, we introduce additional pseudo-
builtins that contain language-dependent features. We can see in Figures 6 and 7
how the Horn clause representation is almost identical in both cases, except for
the bodies of the two Location$dyn*getDefaultLanguage clauses. In the case
of Java, we indicate that the first clause is executed if the runtime type of
this (tot) is either China or Sichuan, while the second requires that variable
to be of runtime type Location. The situation is reversed in the C# exam-
ple, in which instances of Location and HongKong share the implementation
Location$getDefaultLocation while invocations on objects of (exactly) class
China are redirected to China$getDefaultLocation.

A Flexible, (C)LP-Based Approach to the Analysis 163

namespace Lang{

public class Lang{
public void foo(Location loc){
string lang = loc.getDefaultLanguage();
...

}
}
class Location {

public string getDefaultLanguage(){
return "English";

}
}
class China:Location{

private string getDefaultLanguage(){
return "Mandarin";

}
}
class HongKong:China{}
}

Lang$foo(Res,R0,R1):-
asg(R0_,Lang,R0,Lang),
asg(R1_,Location,R1,Location),
Location$dyn*getDefaultLanguage(R4,R1_),
ret.

Location$getDefaultLanguage(Res,R0):-
asg(R0_,Location,R0,Location),
asg(Res,string,"English",string),
ret.

China$getDefaultLanguage(Res,R0):-
asg(R0_,China,R0,China),
asg(Res,string,"Mandarin",string),
ret.

Location$dyn*getDefaultLanguage(Res,R1_):-
tot(R1_, [China]),
China$getDefaultLanguage(Res,R1_).

Location$dyn*getDefaultLanguage(Res,R1_):-
tot(R1_, [Location,HongKong]),
Location$getDefaultLanguage(Res,R1_).

Fig. 7. Transformation for dynamic dispatch in C#

The abstract domain is not required to know anything about which actual
language is to be analyzed but only to provide a common, correct transfer func-
tion for the tot builtin, which will return as output state the same input state
if the instance happens to have a runtime type included in the list of accepted
classes, and ⊥ if not.

6 Experimental Results

We have completed a preliminary implementation of our framework within the
CiaoPP preprocessor [15]. CiaoPP offers a parametric and efficient top-down
analysis engine [23,16] with a good number of abstract domains, including the
ones illustrated in this section. The efficiency of the algorithm relies on keeping
dependencies between different predicates during analysis so that only the really
affected parts need to be revisited after a change during the fixpoint process.
In addition, recomputation is avoided using memoization [11,33,23]. Another
characteristic is that it is multivariant (i.e., abstract calls to a given predicate
that represent different input patterns are automatically analyzed separately)
and follows a top-down approach, in order to allow modeling properties that
depend on the data flow characteristics of the program.

We have performed two experiments with our framework using the bench-
marks corresponding to the JOlden suite [31]. The first experiment is summa-
rized in Figure 8 and shows the scalability of the transformation phase. The first
three columns contain basic metrics about the application: number of classes
(k), methods (m) and instructions (i). Since the latter corresponds to the byte-
code representation of the source, we also list how many program points (pp)
are present in the Horn clause program analyzed. This metric differs slightly
from the number of instructions in the sense that extra clauses and builtins
make it somewhat larger; pp also provides a better approximation of the size

164 M. Méndez-Lojo, J. Navas, and M.V. Hermenegildo

name k m i pp ct

jolden.health.Health 8 30 637 933 1.1
jolden.bh.BH 9 70 1208 1739 3.2
jolden.voronoi.Voronoi 6 73 988 1340 2.2
jolden.mst.MST 6 36 445 665 0.1
jolden.power.Power 6 32 1017 1270 2.1
jolden.treeadd.TreeAdd 2 12 193 274 2.0
jolden.em3d.Em3d 4 22 447 669 0.1
jolden.perimeter.Perimeter 10 45 543 814 0.1
jolden.bisort.BiSort 2 15 323 476 0.1
jolden.all.All 50 317 5839 7251 11.0

Fig. 8. Statistics from the transformation phase

and complexity of the program analyzed because the semantics of the object-
oriented program is made explicit, as seen in Section 2. The fifth column (ct)
shows the time invested (given in seconds) in transforming the input program
and producing the Horn clause version and the metainformation.

The second experiment, shown in Figure 9, illustrates the scalability, efficiency,
and precision of the analysis component of our framework. We first use a simple
abstract domain, Nullity, capable of approximating which variables are definitely
null and which ones definitely point to a non-null location. The second abstract
domain is a Class Hierarchy Analysis (CHA) [3], which uses the combination of
the statically declared type of an object and the class hierarchy of the program
to determine the set of possible targets of a virtual invocation. The use of a
CHA shows the scalability of our framework for a domain with non-linear worst-
case complexity in its operations. Additionally, it also reflects the usefulness of
metainformation files since they are required by the CHA domain in order to
access the hierarchy tree. The columns labeled pp′ show the number of program
points reachable by the analyses. Therefore, pp′ may differ from pp because the
number of analyzed program points is not always the total number of program
points in the program: some commands are found to be unreachable. Since our
framework is multivariant and can thus keep track of different contexts at each
program point, at the end of analysis there may be more than one abstract
state associated with each program point. Thus, the number of abstract states is
typically larger than the number of reachable program points. The ast columns
provide the total number of these abstract states inferred by analysis. The level
of multivariance is the ratio ast/pp′, presented in the st columns. In general, such
a larger number for st tends to indicate more precise results. Running times are
listed in columns pt (time invested in preprocessing the program which includes
the extraction of metainformation for each method in the Horn clause program
and the construction of the class hierarchy) and at (analysis time); both are also
given in seconds.

Both experiments have been performed on a Pentium M 1.73Ghz with 1Gb of
RAM, and averaging several runs after eliminating the best and worst values. We
chose to show separately the total times of the two phases (transformation and

A Flexible, (C)LP-Based Approach to the Analysis 165

Nullity CHA
pt pp′ ast st at pp′ ast st at

jolden.health.Health 2.1 921 5836 6.3 9.6 933 3542 3.8 52.1
jolden.bh.BH 2.2 1739 12384 7.1 50.1 1739 4757 2.7 59.4
jolden.voronoi.Voronoi 2.2 1277 5492 4.3 11.5 1340 5147 3.8 81.3
jolden.mst.MST 2.1 496 1503 3.0 1.1 665 1609 2.4 11.6
jolden.power.Power 2.1 1270 10560 8.3 29.9 1270 2908 2.3 32.7
jolden.treeadd.TreeAdd 2.0 274 880 3.2 0.6 274 729 2.6 6.1
jolden.em3d.Em3d 2.0 669 5565 8.3 0.9 669 3320 4.9 49.5
jolden.perimeter.Perimeter 2.1 814 2653 3.2 1.7 814 3731 4.5 25.0
jolden.bisort.BiSort 2.1 476 3353 7.0 5.8 476 1614 3.4 15.6
jolden.all.All 2.6 7188 48476 6.7 145.9 7251 29586 4.1 391.2

Fig. 9. Statistics for the Nullity and Class Hierarchy (CHA) domains

analysis) because we expect the transformation process to be fully run only once.
Later executions can use incremental compilation for those files that changed,
so that the overhead of the preprocessing phase should be almost negligible in
medium to large programs. Although the same approach can be taken for the
analysis [16], the current implementation is not incremental.

7 Related Work

Most previous research in analysis of object-oriented programs concentrates on
finding new abstract domains that better approximate a particular concrete
property of the program analyzed in order to optimize compilation (e.g., [4,28])
or statically verify certain properties about the runtime behavior of the code
(e.g., [13,19]). In contrast there has been comparatively little work on the for-
mal specification of the intermediate language to which the analyzed program
is transformed or in the application of existing logic programming techniques.
In [25] the authors describe how to automatically derive Prolog versions of Java
programs that share the same operational semantics. However, the compilation
applies to a smaller subset of Java than that supported in our work and no
experimental results are provided. Also, the technique is presented from a more
informal perspective and no analysis is attempted over the transformed logic
programs.

More closely related to ours is the work presented in [1], which draws in
part on the ideas of [26]. The authors also focus on how to reuse existing logic
programming tools, in order to analyze Java bytecode. The approach is based
on encoding an interpreter of the Java Virtual Machine bytecode in a logic
language, Ciao [6], and then partially evaluating this interpreter with respect to
the concrete program to be analyzed. This results in a residual program which
has the same semantics as the original one but is often easier to analyze than the
original set of bytecode+interpreter. As in our case, the analysis and verification
experiments are performed using the CiaoPP [15] tool.

166 M. Méndez-Lojo, J. Navas, and M.V. Hermenegildo

While the approach of [1] is obviously very interesting, it also has the short-
coming that it is quite dependent on the quality of the results obtained by
the partial evaluator. Given the state of the art in partial evaluation, this may
clearly vary significantly depending on the input program. The approach pre-
sented herein is based instead on a direct translation from the Java program into
a Horn clause representation, which obviates this problem, at the cost of having
to write and prove correct the transformer. Also, in this translation we do not
try to mimic the operational semantics of the Java program in the Horn clause
version (i.e., the resulting program if run, e.g., on a Prolog system, would not
necessarily produce equivalent results to those of the Java program). Instead,
the aim is to safely approximate the semantics of the Java program in the Horn
clause representation by taking advantage of the (collecting) SLD semantics as-
sumed by the analyzer. This allows flexibility in the translation and eliminates
the burden of having to simulate exactly the operational semantics of the source
language since we do not want to execute the program but only to obtain safe
results by analyzing it. The flexibility and directness of this approach also allows
supporting a much larger subset of the language than in [1], including excep-
tions, inheritance, interfaces, etc. Also, presumably because of the directness of
the approach with it we have been able to analyze significantly larger programs,
and in less time.

In most of the (non CLP-based) abstract interpretation frameworks for anal-
ysis of Java (e.g., [4,7]) the authors prefer to focus on particular properties and
therefore their solutions (abstract domains and analysis algorithms) are tied to
them, even when if they may be explicitly labeled as multipurpose [20]. In [27] the
authors use a framework that is closely related to Gaia [8] (itself closely related
to [23]). However, the intermediate representation is not described and the seman-
tics of the interprocedural operations is again tied to the Java language. Also, the
benchmarks used are smaller than those that we report on. The more recent Julia
framework [30] is intended to be generic from the point of view of domains but
once more also targets Java as unique source language. This framework is capable
of analyzing large programs in a top-down way, as in our approach, the main other
difference being that we support multivariance, inherited from the CiaoPP ana-
lyzer. Finally, in [22] another interesting generic static analyzer for the modular
analysis and verification of Java classes is presented. The algorithm presented is
also top down but is again tailored specifically to Java source.

8 Conclusions and Future Work

We have presented a transformation-based framework for analysis of object-
oriented programs, which is generic in terms of the source language and abstract
domain in use. The framework consists of a two-step process: a transformation of
the program into a set of Horn clauses that represents a correct approximation
of its standard semantics, and a mature and sophisticated fixpoint algorithm.
We claim that our approach is flexible in the sense that the first phase decou-
ples the fixpoint algorithm from any language-dependent feature. Furthermore,

A Flexible, (C)LP-Based Approach to the Analysis 167

our experimental evaluations support the scalability of our framework showing
results for medium-sized programs as well as its efficiency analyzing them in a
reasonable amount of time, and precision showing high rates of multivariance.

We have performed some promising experiments on an ample subset of Java,
as shown in this paper, but our aim is to support the full Java language. Also,
we are currently incorporating more sophisticated abstract domains (e.g., points-
to/sharing analysis). Moreover, we expect to increase the scalability of our ap-
proach, analyzing larger programs than shown in this paper. To this end, we
are studying the inclusion of modular and incremental features in our fixpoint
algorithm.

References

1. Albert, E., Gómez-Zamalloa, M., Hubert, L., Puebla, G.: Verification of Java Byte-
code using Analysis and Transformation of Logic Programs. In: Hanus, M. (ed.)
PADL 2007. LNCS, vol. 4354, pp. 124–139. Springer, Heidelberg (2006)

2. Alves-Foss, J. (ed.): Formal Syntax and Semantics of Java. LNCS, vol. 1523.
Springer, Heidelberg (1999)

3. Bacon, D.F., Sweeney, P.F.: Fast static analysis of c++ virtual function calls. Proc.
of OOPSLA 1996, SIGPLAN Notices 31(10), 324–341 (1996)

4. Blanchet, B.: Escape Analysis for Object Oriented Languages. Application to
Java(TM). In: Conference on Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA 1999), pp. 20–34. ACM, New York (1999)

5. Bruynooghe, M.: A Practical Framework for the Abstract Interpretation of Logic
Programs. Journal of Logic Programming 10, 91–124 (1991)

6. Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M., López-Garćıa, P., Puebla,
G. (eds.): The Ciao System. Reference Manual (v1.10). Technical report, School of
Computer Science (UPM) (2004), http://www.ciaohome.org

7. Chang, B.-Y.E., Leino, K.R.M.: Abstract interpretation with alien expressions and
heap structures. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 147–163.
Springer, Heidelberg (2005)

8. Le Charlier, B., Van Hentenryck, P.: Experimental Evaluation of a Generic Ab-
stract Interpretation Algorithm for Prolog. ACM Transactions on Programming
Languages and Systems 16(1), 35–101 (1994)

9. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: Proc. of
POPL 1977, pp. 238–252 (1977)

10. DeLine, R., Leino, K.R.M.: BoogiePL: A typed procedural language for checking
object-oriented programs. Technical Report MSR-TR-2005-70, Microsoft Research
(2005)

11. Dietrich, S.W.: Extension Tables: Memo Relations in Logic Programming. In:
Fourth IEEE Symposium on Logic Programming, pp. 264–272 (September 1987)

12. Fecht, C.: Gena - a tool for generating prolog analyzers from specifications. In:
Mycroft, A. (ed.) SAS 1995. LNCS, vol. 983, pp. 418–419. Springer, Heidelberg
(1995)

13. Genaim, S., Spoto, F.: Information Flow Analysis for Java Bytecode. In: Proc. of
VMCAI. LNCS, Springer, Heidelberg (2005)

14. Gosling, J., Joy, B., Steele, G., Bracha, G.: Java(TM) Language Specification, 3rd
edn. Addison-Wesley, Professional Reading (2005)

http://www.ciaohome.org

168 M. Méndez-Lojo, J. Navas, and M.V. Hermenegildo

15. Hermenegildo, M., Puebla, G., Bueno, F., López-Garćıa, P.: Program Development
Using Abstract Interpretation (and The Ciao System Preprocessor). In: Cousot,
R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 127–152. Springer, Heidelberg (2003)

16. Hermenegildo, M., Puebla, G., Marriott, K., Stuckey, P.: Incremental Analysis of
Constraint Logic Programs. ACM TOPLAS 22(2), 187–223 (2000)

17. Kowalski, R., Kuehner, D.: Linear resolution with selection function. Artificial
Intelligence 2, 227–260 (1971)

18. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of jml: A behavioral
interface specification language for java. SIGSOFT Softw. Eng. Notes 31(3), 1–38
(2006)

19. Leroy, X.: Java Bytecode Verification: An Overview. In: Berry, G., Comon, H.,
Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, Springer, Heidelberg (2001)

20. Lev-Ami, T., Sagiv, S.: TVLA: A system for implementing static analyses. In:
Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 280–302. Springer, Heidelberg
(2000)

21. Logozzo, F., Cortesi, A.: Abstract interpretation and object-oriented languages:
Quo vadis? In: Proc. of the 1st. Int’l. Workshop on Abstract Interpretation of
Object-oriented Languages (AIOOL 2005). ENTCS, Elsevier Science, Amsterdam
(2005)

22. Logozzo, F.: Cibai: An abstract interpreation-based static analyzer for modular
analysis and verification of java classes. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 283–298. Springer, Heidelberg (2007)

23. Muthukumar, K., Hermenegildo, M.: Compile-time Derivation of Variable Depen-
dency Using Abstract Interpretation. JLP 13(2/3), 315–347 (1992)

24. Navas, J., Méndez-Lojo, M., Hermenegildo, M.: An Efficient, Context and Path
Sensitive Analysis Framework for Java Programs. In: 9th Workshop on Formal
Techniques for Java-like Programs FTfJP 2007 (July 2007)

25. Peralta, J., Cruz-Carlon, J.: From static single-assignment form to definite pro-
grams and back. In: Extended abstract in International Symposium on Logic-based
Program Synthesis and Transformation (LOPSTR) (July 2006)

26. Peralta, J.C., Gallagher, J., Sağlam, H.: Analysis of Imperative Programs through
Analysis of Constraint Logic Programs. In: Levi, G. (ed.) SAS 1998. LNCS,
vol. 1503, pp. 246–261. Springer, Heidelberg (1998)

27. Pollet, I.: Towards a generic framework for the abstract interpretation of Java.
PhD thesis, Catholic University of Louvain, Dept. of Computer Science (2004)

28. Ruf, E.: Effective synchronization removal for java. PLDI 2000, SIGPLAN No-
tices 35(5), 208–218 (2000)

29. Secci, S., Spoto, F.: Pair-sharing analysis of object-oriented programs. In: SAS, pp.
320–335 (2005)

30. Spoto, F.: Julia: A Generic Static Analyser for the Java Bytecode. In: Proc. of the
7th Workshop on Formal Techniques for Java-like Programs, FTfJP 2005, Glasgow,
Scotland (July 2005)

31. JOlden Suite, http://www-ali.cs.umass.edu/DaCapo/benchmarks.html
32. Vallee-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot

- a Java optimization framework. In: Proceedings of CASCON 1999, pp. 125–135
(1999)

33. Warren, R., Hermenegildo, M., Debray, S.K.: On the Practicality of Global Flow
Analysis of Logic Programs. In: Fifth International Conference and Symposium on
Logic Programming, pp. 684–699. MIT Press, Cambridge (1988)

http://www-ali.cs.umass.edu/DaCapo/benchmarks.html

Snapshot Generation in a Constructive Object-Oriented
Modeling Language

Mauro Ferrari1, Camillo Fiorentini2, Alberto Momigliano2, and Mario Ornaghi2

1 Dipartimento di Informatica e Comunicazione, Università degli Studi dell’Insubria, Italy
mauro.ferrari@uninsubria.it

2 Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano, Italy
{fiorenti,momiglia,ornaghi}@dsi.unimi.it

Abstract. CooML is an object-oriented modeling language where specifications
are theories in a constructive logic designed to handle incomplete information.
In this logic we view snapshots as a formal counterpart of object populations,
which are associated with specifications via the constructive interpretation of log-
ical connectives. In this paper, we introduce the “snapshot semantics” of CooML
and we describe a snapshot generation (SG) algorithm, which can be applied to
validate specifications in the spirit of OCL-like constraints over UML models.
Differently from the latter and from the standard BHK semantics, the logic al-
lows us to exploit a notion of partial validation that is appropriate to encodings
characterised by incomplete information. SG is akin to model generation in an-
swer set programming. We show that the algorithm is sound and complete so that
its successful termination implies consistency of the system.

1 Introduction

We are developing the constructive object-oriented modeling language CooML [19]
(http://cooml.dsi.unimi.it), a specification language for OO systems. Sim-
ilarly to UML/OCL [23], CooML provides a framework for the design of system spec-
ifications in the early stages of the development process. The language allows the user
to distinguish between internally defined elements and the problem domain, which may
involve loosely or incompletely defined components. This encourages the selection of
the appropriate level of abstraction w.r.t. specifications.

CooML follows the spirit of lightweight formal methods [10]: it does not focus on
full formalization, nor on whole system correctness, but emphasizes partiality in anal-
ysis and specification. In particular, in the context of OO modeling, both the validation
of a specification and the check of its consistency can be achieved via the notion of
snapshot, i.e. a population of objects in a given system state that satisfies the specifi-
cation. Previous work has used snapshots for validation of UML/OCL models [8] and
specifications in JML [4].

The novelty of CooML’s approach resides in its semantics, which is related to the
constructive explanation of logical connectives (a.k.a. the BHK interpretation [22]).
Specifically, the truth of a CooML proposition in a given interpretation is explained by
a mathematical object that we call an information term. For the time being, the latter can
be visualized as a sort of proof term inhabiting a type/formula. The underlying logic is

King, A. (Ed.): LOPSTR 2007, LNCS 4915, pp. 169–184, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

170 M. Ferrari et al.

characterized by how classical and constructive information co-exists, the main “entry”
point being the different way in which an atomic formula A is given evidence (for more
details we refer the kind reader to the original formulation of the logic in [15]). If we call
the pair I : P a piece of information, where P is a formula and I is its information term,
then I : P may be true or false in a classical interpretation w, called a world. Thus, we
have a notion of a model of a piece of information based on classical logic. In particular,
we use T{F} to indicate the truth of F ; in fact, T does not contain evidence for F , but it
yields a trivial piece of information true in all the models of F . This introduces a novel
and flexible way to handle incomplete information, a notorious difficulty in information
systems such as relational databases.

Crucially, the constructive side of the logic allows the identification of snapshots
with information terms, thus providing a formal counterpart to the intuitive notion of
object populations. We argue that CooML’s proof-theoretic snapshot generation may
be advantageous in comparison to a model-theoretic one, especially in cases where not
all the information required to define a model is even present. The possibility of treat-
ing information in this less committed way means that we can select only the relevant
information; this may have a cascade of benefits in terms of conciseness of the repre-
sentation.

The contributions of this paper are twofold. First, we extend the semantics developed
in purely logical terms in [15] to object oriented modeling languages. We regard an OO
system specification as a CooML theory T , the system snapshots as the pieces of in-
formation I : T , and the related information content as a suitable set of formulae. We
show that the latter can be seen as the minimum information needed to give evidence to
snapshots and we relate that to snapshot consistency. Secondly, we describe (and imple-
ment) a snapshot generation algorithm (SGA), taking as inputs: (i) a CooML theory T ,
axiomatizing a set of classes in a problem domain PD; (ii) the user’s generation require-
ments G – they serve an analogous purpose of domain predicates in the grounding phase
of ASP’s [17]. As snapshots should be consistent with respect to PD and G , we prove
that consistency checking is sound and that snapshot generation is complete, i.e. if a
consistent snapshot satisfying the generation requirements exists, it will be generated.
This is loosely connected to adequacy results in the theory of CLP’s [7].

2 CooML Specifications

In this section we informally present the language via an example (adapted from [3]),
while we defer the formal exposition to Section 2.1. The problem domain concerns a
small coach company. Each coach has a specified number of seats and can be used
for regular or private trips. In a regular trip, each passenger has its own ticket and seat
number. In a private trip, the whole coach is rented and there may be a guide. The corre-
sponding CooML specification is contained in the package coachCompany (Fig. 1).
To explain our example we need to introduce CooML types system. We distinguish
among data types (in our example, Integer and Boolean), PD types (Person),
and object types (Coach, Trip, Passenger). They all inherit from the top type
Value the identity relation and the string representation. Data types are “statically”
defined, i.e., their values do not depend on the current state. CooML assumes the

Snapshot Generation in a Constructive Object-Oriented Modeling Language 171

package coachCompany;
pds{type Person;

Integer numberOfSeats(Coach c) = (* the number of seats of c *);
Boolean guides(Person p, Trip t) = (* p guides trip t *);
Boolean nobooking(Passenger p, Trip t) = (* p has no booking in t *);
Boolean vacant(Integer s, Coach c, Trip t) =

(* s is a vacant seat on c in t *);
Boolean booked(Passenger p, Integer s, Coach c, Trip t) =

(* p has booked seat s on c in t *);
<constr name=bookingConstraints language=prolog>

false :- vacant(S,C,T), booked(_P,S,C,T).
false :- booked(P1,S,C,T), booked(P2,S,C,T), not(P1==P2).
false :- nobooking(P,T), booked(P,_Seat,_Coach,T).

</constr>
}

class Coach{
coachPty: and{

seats: exi{Integer seatsNr; seatsNr = numberOfSeats(this)}
trips: for{Trip trip; trip is Trip(this) --> true} }

Integer getSeats(){ return seats.seatNr }
}

class Trip{ env(Coach coach)
TripPty: case{private: case{T{exi{Person p; guides(p,this)}}

T{not exi{Person p; guides(p,this)}}}
regular: for{Integer seat; (seat in 1..coach.getSeats()) -->

case{vacant: vacant(seat,coach,this)
booked: exi{Passenger p; T{and{p is Passenger(this)

booked(p,seat,coach,this)}}
}}}}}

class Passenger{ env(Trip trip)
PsngrPty: case{c1: nobooking(this,trip)

c2: exi{Integer seat, Coach coach;
T{and{trip is Trip(coach)

booked(this,seat,coach,trip)}}
}}}

Fig. 1. The coachCompany package

existence of an implementation that evaluates ground terms to values. A PD type ex-
tends Value with a set of problem domain functions.

Nothing is assumed about PD types; they may be characterized by a set of formal or
loose properties that we call PD constraints, introduced by the tag <constr>.

The special subtype Obj of Value introduces object identities. Objects are created
by CooML classes, which are structured in a single inheritance hierarchy rooted in Obj.
The definition of a class C may depend on some environment parameters; namely C(e)
is a class with environment parameters e. If e is a ground instance of the environment
parameters e, then C(e) can be used to create new objects. We write “o is C(e)” to
indicate that o has been created by C(e), while “o instanceof C(e)” means that
o has environment e and has been created by a subclass C’ of C. We call those class
predicates.

172 M. Ferrari et al.

In a package: (i) data types are assumed to be externally implemented; (ii) PD types
are defined in the pds (problem domain specification) section; (iii) classes are intro-
duced by suitable class declarations.

pds declaration and world states. The pds section specifies our general knowl-
edge of the problem domain. It introduces PD types, functions and predicates using
data and class types. In our example we introduce the PD type Person and func-
tions numberOfSeats, guides, . . . The informal descriptions (*...*) use terms
of the global signature provided by the analysis phase [11]. A <constr> declara-
tion introduces a set of PD constraints representing general problem domain proper-
ties that are not interpreted by CooML, but possibly by some external tool. In the ex-
ample, PD constraints are expressed in Prolog assisting the SG algorithm in filtering
out undesired snapshots. The class predicate “o is C(e)” is represented by the Pro-
log predicate isOf(o, C, [e]), while “o istanceOf C(e)” is translated into
instanceOf(o,C, [e]). The first constraint says that a coach seat cannot be vacant
and booked at the same time, the second one excludes overbooking (a seat can be booked
by at most one person), while the third says that the predicatenobooking(P,T)holds
if person P has not booked a seat on the coach associated with trip T. In this paper, we
assume that the signature ΣT of a CooML theory T (including PD types, data types and
classes) is first order and that we can represent the possible states of the “real world”
by reachable ΣT -interpretations, dubbed world states. Reachability means that each el-
ement of the interpretation domains is represented by some ground terms, in our case
CooML values. In a world state, PD symbols are interpreted over the external world,
data types are interpreted according to their implementation, and class predicates rep-
resent the current system objects. For instance the class predicates
mini is Coach(), t1 is Trip(mini), t2 is Trip(mini), t3 is Trip(mini),
john is Passenger(t1)

represent a small company with a single mini-bus mini, three trips t1,t2,t3 operated
by mini and, so far, only one passenger john associated with trip t1.

class declarations and properties. A class declaration introduces the name C of
the class, its (possible) environment parameters e, its property PtyC(this, e), and
its methods 1. An object o created by C(e) stores a piece of information structured
according to PtyC(o, e), and uses the methods implemented by C(e).

For class properties, CooML uses a prefix syntax, where formulas may be labeled.
Labels are used to refer to subformulae. For example, the label seats is used in the
getSeats method to refer to seatsNr. A class property P is an atomic formula
over ΣT , or (recursively) a formula of the form and{P1 . . . Pn}, case{P1 . . . Pn},
exi{τ x;P}, for{τ x;G→P} and T{P ext}, where P ext is a property that may also
use negation not and implication imp. We stress that not and imp cannot be used
outside T.

In CooML’s semantics, a property P defines a set of possible pieces of information
of the form I : P , where I is an information term, that is a structure justifying the truth
of P . Each piece of information I : P has an information content, i.e. a set of simple
properties intuitively representing the minimum amount of information needed to justify
P according to I . A simple property is either an atom or of the form T{P ext}. A simple
property S represents a basic information unit, i.e., it has a unique information term tt

1 We use the self-reference this as in Java.

Snapshot Generation in a Constructive Object-Oriented Modeling Language 173

where tt is a constant. This means that the only information we have is the truth of S,
and that the associated information content is simply the set {S}. Exemplifying,

tt : t1 is Trip(mini)

has information content {t1 is Trip(mini)} and means that the trip t1 is as-
signed to the coach mini in the current world state.

The operator T may enclose a complex property P and indicates that we are inter-
ested only in its truth. Let us consider

tt: T{exi{Person p; guides(p,t2)}} tt: T{not exi{Person p; guides(p,t3)}}

The first piece of information says that t2 is a guided trip without indicating who the
guide is; the second one says that t3 has no guide.

By default 2 the truth of a simple property S in a world state w (denoted w |= S) is
defined as in classical logic, by ignoring T (i.e., w |= T{P} iff w |= P) and interpret-
ing case as ∨, and as ∧, not as ¬, imp as →, exi as ∃ and for{τ x;G(x)→P (x)}
as ∀x(G(x) → P (x)).

In contrast, non-simple properties are interpreted constructively, by means of infor-
mation terms. A piece of information I : P may have one of the following forms:

Existential. (x,I):exi{τ x; P (x)}, where τ is the type of the existential variable
x. The term x is a witness for x and the information content is the one of I : P (x). For
example,

(4,tt) : exi{Integer seatNr; seatNr = numberOfSeats(mini)}

has witness 4 and information content {4 = numberOfSeats(mini)}, signifying
that our mini-bus has 4 passenger seats. Note that, differently from the case of simple
properties, we know the value of x that makes P (x) true.

Universal. ((x1, I1),...,(xn, In)):for{τ x; G(x) → P (x)}, where G(x)
is an x-generator, i.e. a formula true for finitely many x 3. The information con-
tent is the union of those of I1 : P (x1), . . . , In : P (xn) and of the domain
property dom(x; G(x); [x1,...,xn]), a special simple property interpreted as
∀x(G(x) ↔ member(x, [x1, . . . ,xn])). For example, the information content of

((t1,tt),(t2,tt),(t3,tt)) : for{Trip trip; trip is Trip(mini) → true}

is {dom(trip; trip is Trip(mini); [t1,t2,t3])}, showing that the
domain of the trip-generator “trip is Trip(mini)” is {t1,t2,t3}. Since
the atomic formula true corresponds to no information, it can be ignored.

Conjunctive. (I1, . . . , In) : and{P1 . . . Pn}. The information content is the union of
those of Ij : Pj , for all j ∈ 1..n. For instance, a piece of information for the class
property coachPty(mini) and the related information content IC1 is

((4,tt), ((t1,tt), (t2,tt), (t3,tt))) : and{seats(mini) trips(mini)}
IC1 = {4 = numberOfSeats(mini), dom(trip; trip is Trip(mini); [t1,t2,t3])}

2 But one can change this, although we do not discuss it for lack of space.
3 We omit here the precise syntax of generators.

174 M. Ferrari et al.

Disjunctive. (k,Ik):case{P1 . . . Pn}. The selector k ∈ 1..n points to the true
subformula Pk and the information content is Ik : Pk’s. For example, if the object
john with class predicate john is Passenger(t1) contains the information
term (1,tt), then

(1,tt) : case{c1:nobooking(john,t1) c2: ...}

selects the first sub-property of PsngrPty, with information content {nobooking
(john,t1)}, i.e. john has no booking in trip t1 in the current state.

The information content of classes. Let C(e) be a class with property
PtyC(this, e). We associate with C the class axiom

clAx(C): for{Obj this, τ e; this is C(e) → PtyC(this, e)}

The corresponding pieces of information and information content are those for universal
properties. The piece of information for class Coach and its information content IC2

is:

((mini,CoachInfo)) : for{Obj this; this is Coach() → coachPty(this)}
IC2 = {dom(this; this is Coach();[mini]), 4 = numberOfSeats(mini),

dom(trip; trip is Trip(mini); [t1,t2,t3])}

where CoachInfo:coachPty(mini) is defined as in the conjunctive case.

System snapshots and their information content. Let P be a package introducing a
set of constraints T and the CooML classes C1, . . . , Cn. We associate with P a CooML
theory TP = 〈thAx, T 〉, where thAx = and{clAx(C1) · · · clAx(Cn)}.

A piece of information I : thAx represents the information content of the whole
system. We call it a system snapshot, to emphasise that the system may evolve through a
sequence I0 : thAx, . . . , In : thAx, A snapshot for our coachCompany system
is of the form:

(I1,I2,I3) : and{clAx(Coach) clAx(Passenger) clAx(Trip)}

and possible information terms I1, I2, I3 are

I1 = ((mini,CoachInfo)), I2 = (([john,t1],(1,tt)), ([ted,t2],(1,tt)))
I3 = (([t1,mini],(2,((1,tt), (2,(john,tt)),(3,(1,tt)),(4,(1,tt))))),

([t2,mini],(1,(1,tt))),
([t3,mini],(1,(2,tt))))

where [...] denote tuples. A relevant part of the information content for
coachCompany is given in Fig. 2.

The above information content could be seen as an “incompletely specified”
model of the coachCompany theory, where numberOfSeats, nobooking,
vacant, booked and class predicates are completely specified, while for guides
we have only some partial knowledge, expressed by the T-properties, and moreover
nothing is said about Person. The relationship with classical models can be bet-
ter explained by comparing the constructive and classical reading of CooML properties.

Snapshot Generation in a Constructive Object-Oriented Modeling Language 175

dom(o; o is Coach(); [mini]), dom(o; o is Trip(mini); [t1,t2,t3]),
dom([o,t]; o is Passenger(t); [[john,t1],[ted,t2]]),
dom([o,c]; o is Trip(c); [[t1,mini],[t2,mini],[t3,mini]]),
4=numberOfSeats(mini), nobooking(john,t1), vacant(1,mini,t1),
booked(john,2,mini,t1), vacant(3,mini,t1), vacant(4,mini,t1),
T{exi{Person p; guides(p,t2)}}, T{not exi{Person p; guides(p,t3)}}

Fig. 2. Part of the information content of coachCompany

Let T = 〈thAx, T 〉 be a CooML theory. We can switch to the classical interpreta-
tion of thAx simply by using the T operator, i.e. by considering the simple property
T{thAx}. One can prove that T{thAx} has a reachable model if and only if so does
IC(I : thAx), for at least one piece of information I : thAx. Furthermore, one can
prove that IC(I : thAx) is the minimum set of simple formulas that justifies I as an
explanation of thAx.

In this context we are mainly interested in the notion of consistency with respect
to the PD constraints, assuming that the latter can be interpreted as first order sen-
tences. In our example, we interpret a program clause H : −B1, . . . , Bn as the uni-
versal closure of B1 ∧ . . . ∧ Bn → H , as usual. A system snapshot I : thAx for
a theory T = 〈thAx, T 〉 is consistent if its information content IC(I : thAx) is
true in a reachable classical model of T ; T is consistent if there is a consistent snap-
shot for it. For example, the above snapshot (I1, I2, I3) is consistent with respect to
the first and second constraint of the pds section, but not with the third, since both
nobooking(john,t1) and booked(john,2,mini,t1) belong to the infor-
mation content of coachCompany (Fig. 2).

2.1 Formal Definitions

Let T = 〈thAx, T 〉 be a CooML theory and ΣT the associated first order signature.
The set of information terms for a property P , IT(P), is inductively defined as follows,
where x stands for values of x of the appropriate type:

IT(P) = {tt }, if P is simple
IT(and{P1 · · · Pn}) = { (I1, . . . , In) | Ij ∈ IT(Pj) for all j ∈ 1..n }
IT(case{P1 · · · Pn}) = { (k, I) | 1 ≤ k ≤ n and I ∈ IT(Pk) }
IT(exi{τ x; P}) = { (x, I) | I ∈ IT(P) }
IT(for{τ x; G(x)→P }) = { ((x1, I1), . . . , (xn, In)) | Ij ∈ IT(P) for all j ∈ 1..n }

A piece of information for a closed property P is a pair I : P , with I ∈ IT(P). A
collection is a set of closed simple properties. The information content IC(I : P) is the
collection inductively defined as follows:

IC(tt : P) = {P}, where P is a simple property
IC((I1, . . . , In) : and{P1 · · · Pn}) =

⋃n
j=1 IC(Ij : Pj)

IC((k, I) : case{P1 . . . Pn}) = IC(I : Pk)
IC((x, I) : exi{τ x; P (x)}) = IC(I : P (x))
IC(((x1, I1),. . . , (xn, In)) : for{τ x; G(x)→P (x)}) =

⋃n
j=1 IC(Ij : P (xj))

∪ { dom(x; G(x); [x1, . . . ,xn]) }

176 M. Ferrari et al.

The information content IC(I : P) represents the minimum amount of information
needed to get evidence for P according to I . We say that a collection C gives evidence
to I : P , and we write C � I : P , iff one of the following clauses holds:

C � tt : P iff P ∈ C
C � (I1, . . . , In) : and{P1 · · · Pn} iff C � Ij : Pj for all j ∈ 1..n
C � (k, I) : case{P1 . . . Pn} iff C � I : Pk

C � (x, I) : exi{τ x; P (x)} iff C � I : P (x)
C � ((x1, I1),. . . , (xn, In)) :for{τ x; G(x)→P (x)} iff dom(x; G(x); [x1, . . . ,xn]) ∈ C

and C � Ij : P (xj) for all j ∈ 1..n

The information content IC(I : P) represents an information about the current world
state. We define the information content of C as its closure under (classical) logical
consequence, for C ∗ = {P | C |= P}. We say that C 1 contains less information than
C 2 (written C 1 � C 2) iff C ∗

1 ⊆ C ∗
2. Intuitively, the definition of � is justified by

the fact that an user will “trust” C ∗, whenever he trusts C . We could use a different
trust-relation, considering different logics. We only need this to hold:

(1). C ⊆ C ∗;
(2). C 1 ⊆ C ∗

2 implies C 1 � C 2.

Using the above properties, we can establishes the minimality of IC(I : P) with respect
to �:

Theorem 1. Let I : P be a piece of information:

1. IC(I : P) � I : P
2. For every collection C , C � I : P implies IC(I : P) � C .

Now we can apply the above discussion to the problem of checking snapshots against
constraints. Let T = 〈thAx, T 〉 be a CooML theory. We recall that a snapshot for
T is a piece of information I : thAx. We introduce two notions of consistency for
snapshots.

– A snapshot I : thAx is consistent with respect to the constraints T (T -consistent)
iff there exists a reachable model of IC(I : thAx) ∪ T .

– T is snapshot-consistent iff there is at least one snapshot I : thAx such that I :
thAx is T -consistent.

The latter definition is related to classical consistency by the following result:

Theorem 2. Let T = 〈thAx, T 〉 be a CooML theory. T is snapshot-consistent iff there
is a reachable model of T{thAx} ∪ T .

3 A Snapshots Generation Algorithm and Its Theory

A snapshot generation algorithm (SGA) for a CooML theory T = 〈thAx, T 〉 takes
as input the user’s generation requirements and tries to produce T -consistent snap-
shots that satisfy such requirements. Roughly, generation states represent incomplete

Snapshot Generation in a Constructive Object-Oriented Modeling Language 177

snapshots, i.e. in logic programming parlance, partially instantiated terms; inconsistent
attempts are pruned, when recognized as such during generation.

Consistency checking plays a central role. It depends on the PD logic and it is dis-
cussed next. In Subsection 3.2 we illustrate the use of snapshot generation for validating
CooML specifications. Finally, in Subsection 3.3 we briefly outline a non deterministic
algorithm based on which one may develop sound and complete implementations.

3.1 Consistency Checking

Here we briefly discuss a simplified version of consistency checking in our Prolog im-
plementation, called SnaC. To recognize inconsistent attempts, SGA uses an internal
representation of the information content of the current generation state S, denoted by
INFOS . Let PS be the internal Prolog translation of the information content INFOS . For
this simplified version, we assume that PS is executed by a suitable meta-interpreter.
Without giving the formal details, we notice that INFOS consists either of ground facts,
clauses of the form H :- eq(t1,t2) or false :- B, where:

– We use eq to avoid Prolog’s standard unification interfering with Skolem con-
stants. Indeed, the latter represent unknown values originating from the translation
of T{exi{...}}, where different constants may represent the same value. In this
simplified account, the eq atoms are just residuated by the meta-interpreter in a list
of “unsolved equations”.

– The reserved atom false is adopted to detect inconsistency: its finite failure sig-
nals snapshot consistency, conversely, its success corresponds to inconsistency.

Clauses whose head isfalse are called integrity constraints and false may oc-
cur only as such. A SnaC representation PS has the following property: if the meta-
interpretation of a goal G succeeds from PS with answer σ and a list L of unsolved
equations, then Gσ is a logical consequence of PS ∪ L. Furthermore, consistency is
preserved and the models of PS are models of INFOS (in the declarative reading of
PS , where we interpret eq as equality and false as falsehood). As an example, let
us consider the SnaC representation PcComp in Fig. 3 of the information content of the
coachCompany package (Fig. 2).

isOf(mini,’Coach’,[]). false :- isOf(O,’Coach’,[]), not(member(O,[mini]).
isOf(john ’Passenger’,[t1]). isOf(ted ’Passenger’,[t2]). ...
numberOfSeats(mini,4). nobooking(john,t1). booked(john,2,mini,t1).
vacant(1,mini,t1). vacant(3,mini,t1). vacant(4,mini,t1).
guides(P,t2):- eq(P,p0).
false :- guides(P,t3).

Fig. 3. The SnaC representation PcComp

The facts and the constraint in the first lines come from the translation
of domain properties. For example, the first row contains the translation of
dom{o; o is Coach(); [mini])}. The other facts come from the transla-
tion of atoms. The clause guides(P,t2):- eq(P,p0) is the translation of

178 M. Ferrari et al.

T{exi{Person p; guides(p,t2)}}, where p0 is a fresh Skolem constant. Fi-
nally, false :- guides(P,t3) is the translation of T{not exi{Person p;
guides(p,t3)}}.

Let us analyse the three possible outcomes of consistency checking starting from the
example in Fig. 3:

(a) false finitely fails from the program PcComp. This entails that false does not
belong to the minimum model M of PcComp ∪ {eq(X,X)}. The latter contains
all the ground atoms in Fig. 3 as well as guides(p0,t2). Since M is a model
of PcComp, it is also a model of the information content of the coachCompany
package thanks to the properties of the translation.

(b) If we add to PcComp the constraint

c1) false :- nobooking(P,T), booked(P,_S,_C,T).

now the goal false succeeds from program PcComp∪{c1}, residuating the empty
list. This implies that the snapshot corresponding to the information content of
coachCompany is inconsistent w.r.t. c1.

(c) If we instead add the constraint

c2) false :- guides(P,T), isOf(P,’Passenger’,[T]).

the goal false succeeds from program PcComp ∪ {c2}, residuating
[eq(ted,p0)]. This implies that false belongs to the minimum model M
of PcComp ∪ {c2,eq(ted,p0)}. The equality eq(ted,p0) is returned to the
user as a source of inconsistency.

The above discussion is reflected in the following theorem:

Theorem 3. Let T = 〈thAx, T 〉 be a CooML theory, I : thAx a snapshot and P a
program containing the translation of IC(I : thAx) and of the PD constraints T .

1. If false finitely fails from P , then I : thAx is T -consistent.
2. If false succeeds from P residuating a set of constraints U , then I : thAx is

inconsistent with respect to T ∪ U .

In the first case, SnaC accepts I : thAx as a T -consistent snapshot. In the second, U
being empty signals inconsistency. If U is not empty, it is returned as an answer.

A more general result can be established admitting a larger class of simple properties
and PD constraints, via techniques similar to those used in CLP, such as constraint
systems [7]. Roughly, we can consider T as a program of a CLP system whose calculus
is an extension of the standard logic programming operational semantics and where the
constraint system is the Herbrand universe under CET, modified to deal with Skolem
constants.

3.2 Validating Specifications Via SG

One of the purposes of snapshot generation is understanding and validating a CooML
specification. To this aim, the user can specify suitable generation requirements in order

Snapshot Generation in a Constructive Object-Oriented Modeling Language 179

to reduce the number of generated examples to a manageable size and show only the
aspects he is interested in. We explain the language of generation requirements and its
semantics through our example. It may be helpful to keep in mind the analogy with the
behaviour of an answer set program during grounding.

In the implementation, the number of generated snapshots can be limited by means
of the the special atom choice(A). This plays the role of domain predicates in ASP.
The SG algorithm will instantiate A according to its axiomatisation. For example:

choice(isOf(C,’Coach’,[])) :- member(C,[c1,c2]).
choice(isOf(P,’Passenger’,[T])) :- member(P,[anna,john,ted]).
choice(isOf(T,’Trip’,[C])) :- member((T,C), [(t1,c1),(t2,c2),(t3,c1)]).
choice(numberOfSeats(c1,3)).
choice(numberOfSeats(c2,60)).

instructs SG to generate one coach c1 with 3 seats and possible trips t1, t3, and
another c2 with 60 seats and trip t2. The declarative meaning of choice is given
by the axiom schema A → choice(A), which, together with the user definition of
choice, sets up the generation requirements. The generated snapshots will satisfy the
PD constraints, as well as the generation requirements.

Once the SG algorithm loads a CooML theory and the user generation requirements,
it can be queried with generation goals (G-goals). A sample G-goal is:

(g1) [[3,tt], Trips] : isOf(C,’Coach’,[]).

Since [3,tt]:seats(C) has information content 3 = numberOfSeats(C),
the query looks for the information Trips:trips(C) for every coach C with 3 seats.
More precisely, the G-goal includes both a generation goal (“generate all the coaches C
with 3 seats that satisfy the generation requirements”) and a query (“for each C, show
the information on the trips assigned to it”). An answer to g1 is:

Trips = [[t1,tt]] and C = c1

with information content

isOf(c1,’Coach’,[]), isOf(t1, ’Trip’, [c1])

The rest of the snapshot, including information terms for all classes in the package, is
omitted for the sake of space. If the user asks for more solutions, all possible snapshots
will be shown. In the above example, there are two more solutions, where c1 has two
trip assigned or none.

We now sketch some ways in which SG can be used in the process of system speci-
fication and development. This will be the focus of future work.

Validating specifications. The goal here is to show that a CooML theory “correctly”
models the problem domain. Validation is empirical by nature: it relates the theory to
the modeled world. The idea is to generate models that satisfy given generation re-
quirements and check whether they match the user expectations. To this aim, it is useful
to tune the generation requirements to consider separately various aspects that can be
understood within a small, “human viable” number of examples, as usual in this con-
text [8]. For instance, we may concentrate on the validation of the booking part of the

180 M. Ferrari et al.

CoachCompany package. In particular, we can find some supporting evidence of the
correctness of the specification in a match between the expected and actual number of
snapshots, where parameters of the latter are chosen as small as possible, while preserv-
ing meaningfulness. Naturally, snapshots can be used as inputs to tools for automatic,
specification-based testing generation, in the spirit of [18].

Partial and full model checking. As traditional in software model checking, here
the goal is to show that, under the assumptions of the generation requirements, no
snapshot satisfies an undesired property. This is obtained if the SGA finds a snapshot-
inconsistency, i.e. it halts without exhibiting any snapshot. Equivalently, one can prove
that every snapshot satisfies a given property by showing that its negation is snapshot-
inconsistent. We call this approach partial model checking, because in general snapshot
consistency may depend on the selection of generation requirements. We may perform
full model checking if the set of generated snapshots is representative of all models of
the theory w.r.t. the property under consideration.

3.3 A Schematic Algorithm

We now describe a general schema for the snapshot generation algorithm, of which
SnaC is just a first rough implementation. Let T = 〈thAx, T 〉 be a CooML theory,
where thAx = and{clAx(C1), . . . ,clAx(Cn)}. Its information terms are repre-
sented by sets of G-goals that we call populations. The generation process starts from a
set P0 of G-goals to be solved, i.e. to become ground. The SGA gradually instantiates
P0, possibly generating new G-goals. It divides the population in two separate sets:
TODO, containing the G-goals not solved yet and DONE, containing the solved ones.
A generation state has the form S = 〈DONE, TODO, CLOSED, INFO〉, where:

– CLOSED is a set of predicates closed(C, e), which is extended when all the ob-
jects with creation class C(e) have been generated. It prevents the creation of new
objects of class C(e) in subsequent steps.

– INFO is the representation in the PD language of the information content of DONE,
i.e. for every I : isOf(o, C, [e]) ∈ DONE, IC(I : PtyC(o, e)) ⊆ INFO.

The following definitions are in order:

– A state S is in solved form if TODO = ∅.
– Dom(S) = {isOf(o, C, [e]) | I : isOf(o, C, [e]) ∈ DONE ∪ TODO }.
– S1 � S2 for Si = 〈DONEi, TODOi, CLOSEDi, INFOi〉 iff

1. DONE1 ⊆ DONE2, Dom(S1) ⊆ Dom(S2) and INFO1 ⊆ INFO2;
2. If closed(C, e) ∈ CLOSED1, then

isOf(o, C, [e]) ∈ Dom(S1) iff isOf(o, C, [e]) ∈ Dom(S2).

The SGA starts from initial state S0 = 〈∅, TODO0, ∅, ∅〉 and yields a solution state
S = 〈DONE, ∅, CLOSED, INFO〉 such that S0 � S; since TODO = ∅, for ev-
ery I : isOf(o, C, [e]) ∈ TODO0, DONE contains a ground information term
(I : isOf(o, C, [e]))σ solving it. The algorithm computes a solution of S0 that is min-
imal with respect to � through a sequence of expansion steps. The latter are triples
〈S, I : isOf(o, C, [e]), S′〉 such that:

Snapshot Generation in a Constructive Object-Oriented Modeling Language 181

p1. I : isOf(o, C, [e]) ∈ TODO (the selected goal);
p2. (I : isOf(o, C, [e]))σ ∈ DONE′ and I : isOf(o, C, [e])
∈ TODO′ (it has been

solved);
p3. S ≺ S′ and, for every S∗ in solved form, S ≺ S∗ � S′ entails S∗ = S′ (no

solution is ignored).

The high-level code for a non deterministic SGA based on expansion steps is listed in
Fig.4, where TODO0 are the G-goals to be solved under theory 〈thAx, T 〉 and gener-
ation requirements G . The SGA is a general schema, whose core is the implementation
of the expansion steps, predicates error(S) and globalError(S). The latter are
based on the ideas presented in Section 3.1. They use the integrity constraints false
:- B to detect inconsistency and store in the variable UC the “unsolved constraints”.
To ensure the correctness of SG, an implementation has to guarantee properties p1, p2,
p3 of expansion steps as well as the following requirements:

(i) When new objects or new witnesses (for exi) are generated in an expansion
step, they are chosen according to the generation requirements, in such a way that
INFOS |= G for every generated state S.

(ii) When error(S) returns “true”, then INFOS′ is inconsistent w.r.t. T for every
S′ such that S � S′ (S included).

(iii) If globalError(S) returns “true”, then INFOS is inconsistent with respect to
T . If it returns “false”, then either UC is empty and INFOS ∪ T is consistent or
INFOS ∪ T ∪ UC is inconsistent.

SG (〈thAx,T 〉, G , ToDo0)
1 T hy = thAx; PDAx = T ∪G ; S = 〈 /0,ToDo0, /0, /0〉; UC = /0;
2 while ToDo
= /0 do
3 if error(S) fail;
4 else % Generation Step:
5 Choose I : isOf(o,C, [e]) ∈ ToDo and compute 〈S, I : isOf(o,C, [e]), S′〉;
6 S = S′;
7 if globalError(S) fail;
8 else return S, UC

Fig. 4. The SG Algorithm

The current implementation is essentially based on a refinement of the meta-
interpreter considered in Section 3.1. It could be improved, namely in detecting more
than trivial inconsistencies; indeed, no constraint simplification is supported.

To state the adequacy results, we introduce some additional notation (ITP) in order
to associate a class Cj and population P with their information terms:

ITP(P, Cj) = [[[oj1 , ej1], Ij1] , . . . , [[ojk
, ejk

], Ijk
]]

ITP(P) = [ITP(P, C1) , . . . , ITP(P, Cn)]

182 M. Ferrari et al.

where, Ij1 : isOf(oj1 , Cj , [ej1]), . . . , Ijk
: isOf(ojk

, Cj , [ejk
]) are the G-goals of P

with class Cj (1 ≤ j ≤ n); if no G-goal with class Cj belongs to P , then ITP(P, Cj) is
the empty list.

Theorem 4 (Correctness). Let S∗ = 〈DONE∗, ∅, CLOSED∗, INFO∗〉 be a state com-
puted by SG with theory T = 〈thAx, T 〉 and generation requirements G , and let
I∗ = ITP(DONE∗) be the information term of the population DONE∗. Then, either UC
is empty and I∗ : thAx is G ∪T -consistent, or I∗ : thAx is inconsistent with respect
to G ∪ T ∪ UC.

The proof follows from properties (i), (ii) and (iii).

Theorem 5 (Completeness). Let S0 = 〈∅, TODO0, ∅, ∅〉 be an initial state
of SG with theory T and generation requirements G . If there is a state
S = 〈DONE, ∅, CLOSED, INFO〉 such that S0 � S, then the SGA reaches a state S∗

in solved form such that S0 � S∗ � S.

The proof follows from properties p1, p2 and p3.

4 Related Work and Conclusion

We have presented some features of the object-oriented modeling language CooML, a
language in the spirit of UML, but based on a constructive semantics, in particular the
BHK explanation of logical correctives. We have introduced a proof-theoretic notion of
snapshot based on populations of objects and information terms, from which snapshot
generation algorithms can be designed. More technically, we have introduced genera-
tion goals and the notion of minimal solution of such goals in the setting of a CooML
specification, and we have outlined a non-deterministic generation algorithm, showing
how finite minimal solutions can be, in principle, generated. We use a constraint lan-
guage in order to specify the general properties of the problem domain, as well as the
generation requirements. In an implementation of the SGA we assume a consistency
checking algorithm, which either establishes the (in)consistency of the current snap-
shot, or residuates a set of unsolved constraints.

The relevance of SG for validation and testing in OO software development is widely
acknowledged. The USE tool [8] for validation of UML/OCL models has been recently
extended with a SG mechanism; differently from us, this is achieved via a procedural
language. Other animation tools [4] are based on JML specification. In [2] the specifi-
cation of features models are translated into SAT problems; tentative solutions are then
propagated with a Truth Maintenance System. If a inconsistency is discovered the TMS
explains the causes in view of possible model repair. Related work includes also [16],
where design space specs are seen as trees whose nodes are constrained by OCL state-
ments and BDD’s are used to find solutions.

Snapshot generation is only one of CooML’s aspects, once we put our software en-
gineering glasses on and see it more generally as a specification rather than modeling
language [12, 9]. In this paper we have not considered methods, although the underly-
ing logic supports a clean notion of (correct) query methods, namely those that do not

Snapshot Generation in a Constructive Object-Oriented Modeling Language 183

update the system state, but extract pieces of information from it. The existence of a
method M answering P (i.e., computing I : P) is guaranteed when P is a constructive
logical consequence of thAx. Moreover, M can be extracted from a constructive proof
of P . The implementation of query and update methods is a crucial part of future work.

We also plan to improve and extend the snapshot generation algorithm. There are
two directions that we can pursue; first, we can fully embrace CLP as a PD logic,
strengthening the connection that we have only scratched in Section 3.1. In the cur-
rent prototype there is little emphasis on the simplification of unsolved constraints.
This could be partially ameliorated by adopting CLP, in particular over finite domains.
More in general, it is desirable to relate Theorem 3 with the notion of satisfaction-
completeness in constraint systems [7]. Another direction comes from the relation
between CooML’s approach to incomplete information and answer set program-
ming [1, 17], in particular disjunctive LP [13]. A naive extension of the SGA to this
case would yield inefficient solutions, yet the literature offers several ways constraints
and ASP may interact [14, 5]. We may explore the possibility of combining snapshot
generation with SAT provers, to which we may pass ground unsolved constraints in
order to check global consistency. Finally we intend to explore the more general issue
of the relationships between information terms and stable models, in particular partial
stable models [21]; some initial results are presented in [20].

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. In: CUP
(2003)

2. Batory, D.S.: Feature models, grammars, and propositional formulas. In: Obbink, H., Pohl,
K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

3. Boronat, A., Oriente, J., Gómez, A., Ramos, I., Carsı́, J.A.: An algebraic specification of
generic OCL queries within the Eclipse modeling framework. In: Rensink, A., Warmer, J.
(eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 316–330. Springer, Heidelberg (2006)

4. Bouquet, F., Dadeau, F., Legeard, B., Utting, M.: JML-testing-tools: A symbolic animator for
JML specifications using CLP. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 551–556. Springer, Heidelberg (2005)

5. Buccafurri, F., et al.: Strong and weak constraints in disjunctive Datalog. In: Dix et al. [6].
pp. 2–17.

6. Dix, J., Furbach, U., Nerode, A. (eds.): LPNMR 1997. LNCS, vol. 1265. Springer, Heidel-
berg (1997)

7. Fruewirth, T., Abdennadher, S.: Essentials of Constraint Programming. Springer, New York
(2003)

8. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL models in USE by auto-
matic snapshot generation. Software and System Modeling 4(4), 386–398 (2005)

9. Guttag, J.V., Horning, J.J.: Larch: languages and tools for formal specification. Springer,
New York, Inc., New York, NY, USA (1993)

10. Jackson, D., Wing, J.: Lightweight formal method. IEEE Computer, Los Alamitos (1996)
11. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and Iterative Development. Prentice Hall, Upper Saddle River, NJ (2004)
12. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral interface

specification language for Java. SIGSOFT Softw. Eng. Notes 31(3), 1–38 (2006)

184 M. Ferrari et al.

13. Leone, N., et al.: The DLV system for knowledge representation and reasoning. ACM Trans.
Comput. Log. 7(3), 499–562 (2006)

14. Marek, V.W., et al.: Logic programs with monotone cardinality atoms. In: Lifschitz, V.,
Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 154–166. Springer, Hei-
delberg (2003)

15. Miglioli, P., Moscato, U., Ornaghi, M., Usberti, G.: A constructivism based on classical truth.
Notre Dame Journal of Formal Logic 30(1), 67–90 (1989)

16. Neema, S., et al.: Constraint-based design-space exploration and model synthesis. In: Alur,
R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 290–305. Springer, Heidelberg (2003)

17. Niemelä, I., Simons, P.: Smodels - an implementation of the stable model and well-founded
semantics for normal lp. In: Dix et al. [6]. pp. 421–430

18. Offutt, J., Abdurazik, A.: Generating tests from UML specifications. In: France, R.B.,
Rumpe, B. (eds.) UML 1999. LNCS, vol. 1723, pp. 416–429. Springer, Heidelberg (1999)

19. Ornaghi, M., Benini, M., Ferrari, M., Fiorentini, C., Momigliano, A.: A constructive object
oriented modeling language for information systems. ENTCS 153(1), 67–90 (2006)

20. Ornaghi, M., Fiorentini, C.: Answer set semantics vs. information term semantics. In: Infor-
mal Proceedings of ASP 2007: Answer Set Programming: Advances in Theory and Imple-
mentation, http://cooml.dsi.unimi.it/papers/asp.pdf

21. Przymusinski, T.C.: Well-founded and stationary models of logic programs. Ann. Math. Ar-
tif. Intell. 12(3–4), 141–187 (1994)

22. Troelstra, A.S.: From constructivism to computer science. TCS 211(1–2), 233–252 (1999)
23. Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modelling with UML. In:

Object Technology Series, Addison-Wesley, Reading/MA (1999)

http://cooml.dsi.unimi.it/papers/asp.pdf

Synthesis of Data Views for

Communicating Processes

Iman Poernomo

Department of Computer Science,
King’s College London, Strand, London, WC2R2LS

iman.poernomo@kcl.ac.uk

Abstract. Proofs-as-programs is an approach to program synthesis in-
volving the transformation of constructive proofs of specification re-
quirements into functional programs. Various authors have adapted the
proofs-as-programs to other logics and programming paradigms. This
paper presents an adaptation of proofs-as-programs for the synthesis of
distributed program protocols with side-effect-free data views, from proofs
in a constructive proof-system for Hennessy-Milner logic.

1 Introduction

System components interact with clients by two means: they expose methods to
change their state, and provide side-effect-free data views of their state. Often,
a system requires that such communication adheres to a protocol or order. For
instance, in a banking component, the data on an account holder’s bank balance
should not be accessed prior to the account holder entering a correct identifica-
tion code. This paper is concerned with the specification and synthesis of such
data retrieval protocols.

This paper describes an augmented version of Milner’s Calculus of Communi-
cating systems for defining data retrieval protocols, a novel approach to the spec-
ification of data retrieval protocols based on traditional realizability notions and
a deductive system for simultaneously deriving protocols and their specification.

We will be specifying and synthesizing the behaviour of distributed programs
built on a synchronous and asynchronous messaging infrastructure. In particular,
we address an important and relatively unexplored issue in the formal develop-
ment of complex systems: the synthesis of complex, side-effect-free data views
for distributed programs. Data views are an important aspect of all software. In
object-oriented terms, they are often implemented as accessor methods that en-
able clients to obtain information about the state that an object encapsulates. In
the case of enterprise applications, data views implement domain-specific busi-
ness logic and are consequently difficult to specify and implement correctly. Our
work uses proofs-as-programs techniques to specify and develop provably correct
complex data views in tandem with distributed programs.

Rather than work with a specific programming language, we will consider
an abstract coordination language to model distributed data retrieval protocols.

King, A. (Ed.): LOPSTR 2007, LNCS 4915, pp. 185–200, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

186 I. Poernomo

Our coordination language consists of Milner’s Calculus of Communicating Sys-
tems (CCS) [5] without fixed points, extended with extra constructs to denote
data views that can be accessed at certain points in a system execution. Terms
of our language can be easily transformed into actual systems. Basic components
are modelled as CCS processes. CCS messages represent side-effect producing
methods of component interfaces and data views represent side-effect-free acces-
sor methods of interfaces. The absence of recursion corresponds to the absence
of feedback loops within component architectures (the usual situation in case
of enterprise systems). Synchronous and asynchronous communication between
components is modelled via CCS message exchange. Data views of components
are represented as lambda terms.

An important aspect of our language is that it supports the modelling of
system protocols – the orders in which messages should be received and sent. We
extend the traditional representation of a system protocol in the CCS to include
data views. There are points in a system’s execution where data views should not
be accessed. For instance, as part of a security protocol, an authorizing message
might need to be received to enable access to confidential data. Our language
enables us to model such protocols.

We specify program behaviour as modal Hennessy-Milner formulae and pro-
vide a constructive proof system for reasoning with these specifications. Hennessy-
Milner formulae arenot enough to specify associateddata views and the logic alone
cannot be used to synthesize required views. We will define a method for data views
and their dynamic behaviour with respect to system execution. We shall be able
to specify two aspects of data view behaviour. 1. Functional behaviour. We can
specify what kind of values a data view should have, with respect to an associ-
ated system description. 2. Dynamic behaviour. As a system executes, the value
of a data view will evolve. The accessor method of an object will not necessarily
produce the same result at different stages in the object’s lifetime, as the state of
the object will change. We will show how to specify modal development in data
viewvalues: requirements of data view evolution andprotocolswith respect tomes-
sage activity. Our method adapts notions of constructive realizability to make such
specifications, enabling a synthesis methodology that adapts traditional proofs-as-
programs to extract data retrieval protocols from proofs of their specification.

This paper proceeds as follows. Section 2 summarizes how architectures with
data views can be modelled as communicating processes using an augmented
version of the CCS. Section 3 defines the Hennessy-Milner formulae, explaining
how these formulae specify behaviour of CCS processes and, by extending real-
izability notions, data views. Section 4 presents our Hennessy-Milner logic and
shows how proofs of the logic can be encoded within a logical type theory. We
sketch the idea of proofs-as-distributed-programs in Section 5. We briefly review
related work and provide concluding remarks in section 6.

2 Architectures with Data Views

A software architecture is generally understood to be a configuration of black-box
components, connected to each other by lines of communication [4]. We will use

Synthesis of Data Views for Communicating Processes 187

an extension of the UML2 superstructure [6] to visually represent distributed,
message-based, component-based architectures. We will then define a language
that gives an operational semantics for how an architecture can behave. The lan-
guage combines Milner’s Calculus of Communicating Systems (CCS), providing
concurrency and communication primitives, with a simply lambda calculus with
disjoint unions and sums.

The treatment of distributed component architectures via CCS is well under-
stood in the software architecture community, but an important aspect of our
treatment is the explicit identification of data views.

Component architectures and data views. We review some standard
concepts of system architecture design and explain how data views are to be
understood.

Basic components. Basic components are the building blocks of a system
architecture, designating encapsulated nodes of computation. Components can
communicate in three ways: Receiving messages. A message is received by a
component to initiate computation. Sets of messages that may be received are
exposed by components as provided interfaces. Sending messages. A message is
sent by a component to communicate with other components. Sets of messages
that may be sent are exposed by components as required interfaces. Providing
data views. The sending and receipt of messages is a way of invoking computation
on components. Computation results in changes to a component’s internal state.
A component’s state is accessed via data views, side-effect-free functions that
interpret the state according to the business logic of the required system.

In UML2, basic components are visually represented as in Fig. 1(a). The
lollipop denotes a provided interface. The socket denotes a required interface.
We extend the UML2 with a triangle symbol to denote side-effect-free data
views that are associated with component. (The triangle symbol is a superfluous
extension, as it essentially corresponds to a list of the accessor methods that are
associated with a UML2 component. However, for our purposes, it is useful to
make data views explicit in architectural diagrams.)

For the purposes of simplicity, we will make the assumption that each interface
consists of one method: a provided interface is a message that can be received
and a required interface is a message that can be sent.

Protocols. A component protocol is the order in which messages may be sent
and received by a component and in which data views may be invoked. In the
simplest case, views can be accessed and messages can be input and output in

(a)

AccountMgt

(basic component)

Required interface

Provided interface

Data viewacDetails

iCard

chkCard

(b)

Fig. 1. (a) Visual representation of a basic component. (b) Example architecture.

188 I. Poernomo

any order. However, more commonly, a particular input message will result in
specific output messages, and data views should be accessed at prescribed points
in a computation sequence.

Example 1. Consider the banking component AccoumtMgt of Fig. 1 (a). The
component’s provided interface permits the input of a credit card number by
receiving the message iCard. The component’s required interface enables the
checking of a card’s validity by sending the message chkCard.

The data view for the program is the term acDetails, which outputs details
about the account associated with the card. The view does not affect the state of
a component. Rather, it provides information about the state of the component.
The data view is a vital part of the component: it might be used within a larger
system for displaying account details on an automated teller machine screen or
on an internet banking website.

Clearly, the component should never send a request to check a card’s validity
without first obtaining the card’s number. Also, for security purposes, account
details should not be accessed via the data view before a validity check is made
on the card. The protocol of the system must therefore be the following ordering:

iCard → chkCard → acDetails

Component communication. Synchronous communication between two com-
ponents is visually represented by a connection between provided and required
interfaces. The potential for asychronous communication will be denoted by
unconnected, but matching, provided and required interfaces exposed by com-
ponents at the same level of architectural abstraction (that is, occuring where a
connection could be made).

Example 2. An example of two components in synchronous communication is
given in Fig. 1(b). The left hand component is taken from Example 1. The right
hand component is used to check a bank card’s validity, via the provided method
chkCard. The message chkCard is restricted to be synchronized between the two
components.

A system architecture consists of a set of components with connections between
them.

CCS with data views. We have just described how system architectures are
defined according to UML2. A notation such as UML2 is useful to identify the
static structure and composition of a component-based system. It is equally im-
portant to identify the dynamic behaviour of a system – e.g., how it will react
to messages, what protocols are accepted, etc. A formal definition of dynamic
behaviour that is compositionally associated with static system architecture de-
scriptions is particularly useful for analysis. In our approach, we use an extension
of the CCS to define the operational semantics of our architectures. Later we
will see how logical analysis and synthesis can be developed due to this choice
of formalism.

Synthesis of Data Views for Communicating Processes 189

We define the set of Actions to consist of incoming messages m and outgoing
messages m̄ with m ranging over some set of messages. The grammar for our
extension, CCS with data views (hereafter denoted by the overloaded CCS) is
given as follows.

CCS := 0 | X | (p + q) | (p|q) | p/s | s.p | μX.p | (p view t)

where p, q ∈ CCS, X is ranges over a given set of variables TV ar, s ranges over
Actions and t is a closed lambda term for a signature Term(Σ), now defined.
Our approach is parametrized by the choice of a many-sorted signature Σ =
〈S, TF, P 〉, consisting of: 1) a set S of sorts. Sorts are generated from a set of basic
sorts, B(S) according to the following inductive definition. First, B(S) ⊆ S. Also,
if s1 and s2 are in S, then so are the function sort (s1 → s2), the product sort
(s1 ∗ s2) and the disjoint union (s1|s2). We assume that B(S) includes a special
sort, called Unit. 2) sorted function symbols, TF . We assume a single inhabitant
() of the sort Unit ∈ B(S). 3) sorted predicate symbols P of predicate symbols.
We define the terms for a signature Σ = 〈S, TF, P 〉, Term(Σ) generated over
variables from a set V ar:

Term(Σ) := e | x | Inl(p) | Inr(p) |match p with Inl(x) => q | Inr(y) => r
fun x : s => p | (p q) | (p, q) | fst(p) | snd(p)

Terms consist of terms generated by the signature, extended to include a lambda
calculus, written in an SML style syntax.Inl and Inr are constructors used to
form disjoint unions.

Process terms form a semantics of system architectures in the following stan-
dard sense. A CCS process denotes the state of a distributed system in terms
of its ability to perform actions and the protocol in which actions are to be
performed. Actions are either sending or receiving messages or internal com-
putation. Incoming and outgoing message actions are denoted by letters, taken
from the same set, with outgoing messages marked by an overbar (¯). The τ
action designates internal computation (processing that is not observable to a
client). Proceses are built using the standard recursion, non-deterministic choice,
parallel composition and action sequencing constructs of [5].

Terms of the calculus can be understood to directly denote compositional,
behavioural specifications of the elements of system architecture that were pre-
viously described: basic components, compound components, encapsulation and
architectures consisting of these elements.

The semantics of a basic component is understood as its protocol. This can
be represented easily within our syntax. Required protocols are specified using
the action sequencing operator, with the protocol order given by the order of
actions and data views.

Example 3. For example, the protocol for the AccountMgt component of Exam-
ple 1 is given as

iCard.chkCard.(0 view acDetails)

190 I. Poernomo

The operational semantics shows this term has the required protocol: to ac-
cess acDetails, the term must first input the card and then send a request for
verification.

Parallel composition of components, permitting asychronous communication is
simply achieved via the | operator. The hiding operator is understood in CCS to re-
strict communication, so that a/m means that the action m cannot communicate
with terms outside of a/m, only with subterms of a. Sychronous communication
corresponds to theparallel compositionof terms,with the sychronizedmessagehid-
den.Continuing example3, theparallel composition iCard.chkCard.0|chkCard.0/
chkCard represents synchronous communication between two components.

Data views are functions that access the state of the distributed system and
provide information on it. The domain-specific function symbols of Σ provide
basic data views. More complex combinations of functional views are provided
as lambda terms of Term(Σ). A data view t is associated with a process p via
the constructor (p view t).

Example 4. For example, the process term

((iCard.chkCard.0) view acDetails)|((chkCard.0) view isV alid)/chkCard

involves the same process constructors as the term above, but with data views
inserted. The data views for the program are the domain-specific functions
acDetails and isV alid from Σ. The former view outputs details about the ac-
count owner associated with the card. The latter view is a boolean function
whose output tells us if the card is valid or not. Note that the views do not
affect the state of the system – they provide information about how the state of
the system is affected by the execution of the basic distributed CCS terms. For
instance, acDetails will return an error record if the chkCard request is made
and it is determined that the card number is invalid.

In component terms, we can consider the left and right processes as states of
components, and data views as side-effect-free accessor methods of component
interfaces.

Operational semantics of CCS. The way in which CCS programs evaluate
is given by a labelled transition system semantics. A process p can receive or
send a message m, resulting in a new process p′, denoted by a labelled transition
p

m−→ p′. The rules of Fig. 2 define when a process can make a transition to
a new process in terms of possible transitions of subprocesses. All the rules
except (pure) are standard and well-understood (see [5] for full motivation).
For example, the rules (synch1) and (synch2) say that message synchronization
can occur between the parallel composition of processes p and q, if one process
can output a message via action m and the other can receive the message via
matching action m̄.

The (pure) rule is specific to our system. The rule says that, views can be
discarded in the evaluation of a system.

The semantics of lambda terms is given by the usual reduction rules. We
assume that, when a function symbol is applied to arguments of appropriate

Synthesis of Data Views for Communicating Processes 191

ā.p|a.q
τ−→ p|q

(sync1)
a.p|ā.q

τ−→ p|q
(sync2)

p1
m−→ p2

p1|q m−→ p2|q
(conc1)

q1
m−→ q2

p|q1
m−→ p|q2

(conc2)

p1
m−→ p2

p1+q
m−→ p2

(choice1)
q1

m−→ q2

p + q1
m−→ q2

(choice2)

p1[μX.p1/X]
m−→ p2

μX.p1
τ−→ p2

(rec)
p

m−→ q

(p view f)
m−→ q

(pure)

p1
m−→ p2 m is not n

p1/n
τ−→ p2/n

(encap1)
p1

m−→ p2 m is n

p1/n
m−→ p2

(encap2)

Fig. 2. Operational semantics for CCS programs with data views

arities and types, within the context of a state of process evaluation, it should
always evaluate to an answer, which can be represented as another term of
Term(Σ). This assumption is formalized by means of a mapping Evalp indexed
by process p, that gives the return value term for a function application, with
respect to p. Given a process p, a function symbol f ∈ TFs1...sn,s and arguments
(a1, . . . , an) of sort (s1 ∗ . . . ∗ sn), Evalp(f(a1, . . . , an)) returns a term from
Term(Σ) of sort s.

Example 5. Consider a domain-specific API for an online romantic dating ser-
vice. Users may specify desirable requirements of a date, which are then given in
XML format to the system for processing. The system should recommend a date
from its database that is the best match to these requirements. Depending on
the state of the system (the availability of matching persons), the match might
closer to or further from the requirements. The matching function is represented
in Σ as a function symbol POtoPS : XML → XML, which, given requirements
in XML, returns a match in XML. Let o be a list of requirements that specify,
say, a female nonsmoker in their 20s. The evaluation of the term POtoPS(o))
will have an answer that will depend on the process t under consideration. If t is
a process term that denotes a state where a twentysomething female nonsmoker
is available, then Evalt(POtoPS(o)) will provide her as a match. However, if t
is a process term that denotes a state in which there are only female smokers in
their 20s, then Evalt(POtoPS(o)) will provide an empty record.

For the purposes of generality, we do not explicitly define Evalp for the function
symbols that occur in lambda terms. Instead, we assume that Evalp is always
defined according to the domain’s API specification. We assume that Evalp is
so defined that repeated applications of �Σ always terminate. We write �̂Σ,p

for the transitive closure of �Σ,p, and say that a evaluates to b if a �̂Σ,p b.

Definition 1. We define the relation m⇒ to hold between two terms a and b when
b evolves from a via the action m with possibly some number of τ transitions in
between: a = a0

τ−→ a1
τ−→ . . .

τ−→ ai
︸ ︷︷ ︸

0 ≤ i

m−→ b0
τ−→ b1

τ−→ bj
︸ ︷︷ ︸

0 ≤ j

= b

192 I. Poernomo

3 Specification of System Architectures

We use modal many-sorted formulae to specify and reason about two related
aspects of our architectures: possible behaviours and possible data views. This
understanding of formulae as specifications is key to our adaptation of proofs-
as-programs. Behavioural specification is understood according to the usual se-
mantics due to Hennessy and Milner. Data views are specified as constructive
content, by adapting notions of modified realizability.

Formulae. Many-sorted formulae, WFF (Σ), for a signature Σ = 〈S, TF, P 〉
are constructed according to the following definition, given with respect to the
denumerable set of term variables, V ars indexed by sorts s. 1) Q(t1, . . . , tn)
where Q ∈ Ps1...sn is a predicate symbol in Q and every ti (i = 1, . . . , n) is a
well-sorted lambda term of sort si. 2) If x ∈ V ars and A, B are in WFF (Σ)
then so are (A ∧ B), (A ∨ B), (A ⇒ B), ∀x : s • A and ∃x : s • A. 3) If
A ∈ WFF (Σ) and m is a process term (with possible data views), then so is
[m]F . 4) ⊥ ∈ WFF (Σ). We often write ¬A for (A ⇒ ⊥). (Note that we employ
quantification with functional sorts. This enables us to reason with and specify
typed lambda terms using our formulae.)

Behavioural specification. Possible behaviour is specified in the standard
fashion for Hennessy-Milner formulae with many-sorted quantification. Proper-
ties of distributed programs are described using ordinary many-sorted formulae.
For instance, consider a network containing several machines storing copies of
an identical database. Assume the sort Location denotes the finite number of IP
addresses for these machines, and the predicate ConnectedDB(x) denotes that
a connection to the database has been made to the machine at IP address x.
Then formula ∃l : Location • ConnectedDB(l) describes program behaviour in
which a connection to the database at particular host has been achieved.

Definition 2. A formula F is true of the behaviour of a term t, written t � F ,
according to the following recursive definition:

– If F is atomic, then h(F, t) = True.
– If F ≡ ∀x : T • G, then for every a : T , t � G[a/x].
– If F ≡ ∃x : T • G, then there is an a : T such that t � G[a/x].
– If F ≡ G ∨ H, then t � G or t � H.
– If F ≡ G ∧ H, then t � G and t � H.
– If F ≡ G ⇒ H, then t � G entails t � H.
– If F ≡ [m]G, then for every u where t

m⇒ u it is the case that u � G.
– If F ≡ 〈m〉G, then there is a u such that t

m⇒ u and u � G.
– t (⊥ is never true.

Specification of data views. A specification of a data view defines the re-
quired behaviour of a data view function at a state in a system’s execution.
Data views are specified as required constructive content of formulae, in a fash-
ion analogous to how functional programs are specified as constructive content
of intuitionistic formulae in the proofs-as-programs approach. For instance, the

Synthesis of Data Views for Communicating Processes 193

F xsort(F)

P (ā) Unit

A ∧ B

⎧

⎨

⎩

xsort(A) if not Harrop(B)
xsort(B) if not Harrop(A)
xsort(A) ∗ xsort(B) otherwise

A ∨ B xsort(A)|xsort(B)

A → B

{

xsort(B) if not Harrop(B)
xsort(A) → xsort(B) otherwise

∀x : S.A s → xsort(A)

∃x : S.A

{

s if Harrop(A)
s ∗ xsort(A) otherwise

⊥ Unit

Fig. 3. The map xsort(F) from formulae to Σ sorts

formula ∃l : Location•ConnectedDB(l) can also be seen as specifying a process
that evaluates with a data view whose content is a constructive witness for l, the
location of the database which the process has connected to.

We utilize modalities to specify how a data view function might behave at some
future stage in a processes’s execution. For instance, the formula 〈iCard〉∃d :
Account • V alidDetails(d) specifyies a realizing a data view r of a program. The
formula requires that, if the program receives a message iCard, then possibly the
program provides an output data view r, acting as the witness for d, such that r
is a valid account record (not an error record, when V alidDetails(r) is true). The
program (iCard.chkCard.0 view acDetails) satisifes this specification, as there
are possible executions after receiving iCard such that the data view acDetails
is a valid account record (V alidDetails(r)).

To formally define how to specify data views, we first need to adapt the defi-
nitions of Harrop formulae and the Skolem form to Hennessy-Milner formulae.

Definition 3 (Harrop formulae). A formula F is a Harrop formula if it is 1)
an atomic formula, 2) of the form (A∧B) where A and B are Harrop formulae,
3) of the form (A → B) where B (but not necessarily A) is a Harrop formula, 4)
of the form (∀x : s.A) where A is a Harrop formula, 5) of the form [m]A where
A is Harrop, or 6) of the form 〈m〉B where B is Harrop.

We write Harrop(F) if F is a Harrop formula, and ¬Harrop(F) if F is not
a Harrop formula.

We use the type extraction map xsort(.) from [7], given in Fig. 3. This maps
logical formulae to Σ sorts. Then we need to extend the notion of Skolem form
to our modal formulae, as follow.

Definition 4 (Skolem form and Skolem functions). Given a closed formula
A, we define the Skolemization of A to be the Harrop formula Sk(A) defined as
follows. A unique function letter fA (of sort xsort(A)) called the Skolem function,
is associated with each A.

194 I. Poernomo

– If A is Harrop, then Sk(A) ≡ A.
– item If A ≡ B ∨ C, then

Sk(A) = (∀x : xsort(B).fA = Inl(x) ⇒ Sk((B)[x/fB])∧
(∀y : xsort(C).fA = Inr(y) ⇒ Sk(C)[y/fC])

– If A ≡ B ∧ C, then

Sk(A) = Sk(B)[fst(fA)/fB] ∧ Sk(C)[snd(fA)/fC]

– If A ≡ B → C, then
• if B is Harrop, Sk(A) = B → Sk(C)[fA/fC].
• if B is not Harrop and C is not Harrop,

Sk(A) = ∀x : s.(Sk(B)[x/fB] → Sk(C)[(fAx)/fC])

– If A ≡ ∃y : s.P , then
• when P is Harrop, Sk(A) = Sk(P)[fA/y]
• when P is not Harrop, Sk(A) = Sk(P)[fst(fA)/y][snd(fA)/fP]

– If A ≡ ∀x : s.P , then Sk(A) = ∀x : s.Sk(P)[(fAx)/fP].
– If A ≡ [m]P , then Sk(A) = [m]Sk(P).

If A ≡ 〈m〉P , then Sk(A) = 〈m〉Sk(P).

In a typical proofs-as-programs method such as [7], a formula A specifies a
functional lambda term program p if, and only if, the program is an intuitionistic
modified realizer of A, now defined.

Definition 5 (Intuitionistic modified realizers). Let p be closed element of
Term(Σ). Let A be a non-modal formula. Then p is an intuitionistic modified
realizer of A when (Sk(A)[p/fA].

We extend this definition to hold between process terms and formulae, to specify
possible data views of processes. Data views are functional programs. So, a
data view can be specified as an intuitionistic modified realizer. The presence
of modal formulae permits us to formally extend the concept of realizability to
specification of possible data views of processes. For instance, we treat modal
formulae of the form [m]B to specify processes whose execution of event m will
result in a data view that is a Skolem formula for B.

Data views may be contained within process terms. This fact requires us to
extend realizability to views for subterms that are contained within parallel,
choice, recursion and message input or output terms. The idea is as follows. A
formula can describe the view for an entire process, if such a view exists, and
it can also describe visible views of subprocesses in the process. For instance,
a parallel term is of the form a|b or ((a|b) view f). If it is the latter, then f is
the data view for the process, and a formula F correctly describes this view if f
is an intuitionistic realizer. If it is the former, then the term contains two data
views – one for each of the subprocesses a and b. The single formula F describes
this term accurately if it describes the views of both a and b as realizers.

The definition below extends these ideas recursively to all terms.

Synthesis of Data Views for Communicating Processes 195

p A ∈ AX
! p A

(Axiom-I)

! pa�G ! qb�G

! parallel(p, q)a|b�G
(parallel)

! pa�F ! qb�F

! union(p, q)a+b�F
(union)

provided Msg(G) �⊆ Msg(a) ∪ Msg(b)

! pb�P a
n⇒ b

! pos(p, n)a�〈n〉P
(pos)

! pa�P X is free in a

! repl(X.p)μX.a�P
(rec)

! pa�P m does not occur in P

! hide(p, m)a/m�P
(hide)

! pa�F !Int qF ⇒G

! cons(p, q)a�G
(cons)

Fig. 4. Type theoretic presentation of the structural rules of the IHM logic. The stan-
dard rules of IHM can be recovered by ignoring the proof-term subscripts, retaining
only the superscript types (the program/formula pairs).

Definition 6 (Modal Realizability). A process p is a modal realizer of a
formula A, written p mr A, when the following conditions are satisfied.

– If A is Harrop, then p � A is provable.
– Assume A is of the form [m]B. Then for all p′ such that p

m⇒ p′ we know
that p′ mr B.

– Otherwise,
• if p is of the form (p view f), and f�̂Σ,panswer, then

p � Sk(A)[answer/fA] holds.
• If p is of the form q|r, then q mr A and r mr A.
• If p is of the form q + r, then q mr A and r mr A.
• If p is of the form q/m, then q mr A.
• If p is of the form μX.q then q[μX.q/X] mr A.

4 Deductive System

Hennessy-Milner logics are formal systems for simultaneously reasoning about
and constructing CCS programs. A sequent-based Hennessy-Milner logic was
first described in [8]. We shall employ a simpler, constructive, natural deduc-
tion version of that logic, called Intuitionistic Hennessy-Milner logic (IHM), for
reasoning about and synthesizing provably correct CCS programs with views.

Calculus. The logic manipulates theorems, which consist of pairs of programs
and formulae of the form p) F , where the left hand side of the diamond is a
process, and the right hand side is a specification of the process’s behaviour.

Our system is defined with respect to a separate logical subsystem. For pur-
poses of adapting proofs-as-programs, we take this subsystem to be intuitionistic
logic, as presented in [7]. The rules of IHM can be obtained from Fig. 4. We mo-
tivate each rule as follows. 1) The (parallel) rule tells us that, if G is a property
shared by two programs a and b, then G is also true of their parallel composition
a|b. 2) The (union) rule says that, if G is a property shared by two programs a

196 I. Poernomo

and b, then G is also true of their nondeterministic choice composition a + b. 3)
The rule (pos) asserts that, if process a can possibly evolve to b by performing
action m (and possibly some internal actions), and A is known to hold over b,
then 〈m〉A holds for a. 4) The (repl) rule says that if P is known for a then it is
known for the replication of a. 5) The (hide) rule says that if P is true of a and
does not involve a statement about m, then P is still a true statement about
a/m. 6) The (cons) rule permits us to use intuitionistically derived inferences to
conclude new things about the same process.

There is an axiom introduction rule in both subsystems Int and IHM that
allow us to develop proofs from a domain specific theory given by a set AX of
axioms. We assume the axioms represent a consistent and true theory of domain
specific truths about processes.

One of the important properties of the calculus is that, given a proof of a the-
orem p) F , the formula F is a correct behavioural description of the process p.

Theorem 1 (Behavioural soundness). If (p) F then p � F .

Proof. By induction on the length of the derivation (p) F .

This theorem shows that a proof of a theorem F will result in an accompanying
process that satisfies F as a behavioural specification. However, it says nothing
about the satisfaction of F as a data view specification.

We consider a process p to satisfy a process/formula pair q) A when 1) the
formula is true of the behaviour of p, 2) the formula correctly specifies a possible
data view of p as a modal realizer and 3) p and q are identical, modulo differences
in data views. When this is the case, we say that p is a process realizer of q)A,
and we write p pr q) A. The calculus alone is not enough to produce process
realizers. We need to employ program extraction techniques to do this. The next
step in providing such an adaptation is to define the logic as a type theory, to
encode proofs for eventual transformation.

Type-theoretic presentation. Our calculus forms a logical type theory, LTT,
with proofs represented as terms (called proof-terms), program/formula pairs
represented as types, and logical deduction given as type inference. The proof-
terms use a grammar similar to that of standard proofs-as-programs approaches
for denoting proofs in Int, but extended with new terms to incorporate the struc-
tural rules of the IHM. Because of the (cons) rule, proof-terms corresponding to
structural rule applications can involve proof-terms corresponding to intuitionis-
tic logic rule application. Type theoretic presentations of Int and IHM are given
in [7] and Fig. 4, respectively. (It is important to note that this LTT is a lambda
calculus that is separate and distinct from the lambda calculus that is used for
data views.)

5 Extraction

We now outline our process of extracting process realizers from proofs of speci-
fications. We define an extraction map extract : LTT → CCS, from the terms of

Synthesis of Data Views for Communicating Processes 197

pw�P eview(pw�P)

any proof-term with H(P) ()
Axiom((w view f) P) f

cons(qa�A, rA⇒C)

{

(extractInt(r) eview(i)) not H(A)
extractInt(r) H(A)

Fig. 5. View extraction, defined over non-structural proof-terms. H(A) means A is a
Harrop.

pw�P extract(pw�P)

any proof-term with H(P) w
Axiom((w view f) P) (w view f)

cons(qa�A, rA⇒C) (a view eview(p))

parallel(pa�A, qb�B) extract(p)|extract(q)
union(pa�A, qb�B) extract(p) + extract(q)

pos(qa�A, m) m.extract(q)
hide(qa�A, m) extract(q)/m
repl(X.qa�A) μX.extract(q)

Fig. 6. The extraction map

the logical type theory, LTT, to processes of CCS. Our map is an extension of
the usual intuitionistic extraction map extractInt from Int proof-terms to modi-
fied realizers, as presented in [7]. The map is extended for IHM proof-terms in
Figs. 5 and 6.

We assume that the intuitionistic extraction map always takes axiom introduc-
tion proof-terms (of the form AxiomInt(A)) to modified realizers (lambda terms
that realize A). Also, we assume that each IHM axiom introduction rule is with
a proof-term of the form Axiom((l view f)) A) such that f is a modified real-
izer of A and (l view f) is a process realizer of A. This assumption means that
axioms that specify processes and views are always transformed into programs
that satisfy these specifications.

We have the following soundness result for intuitionistic extraction.

Theorem 2 (Soundness of intuitionistic extraction). Take any intuition-
istic proof, represented in the LTT as (Int pP Then extractInt(p) will produce a
modified realizer of P (Int Sk(P)[extractInt(p)/fP].

Proof. The proof proceeds according to the usual proofs of extraction soundness
for intuitionistic logic. The presence of modal formulae does not affect the proof.

We wish to derive a similar result for the extraction map over IHM proof-terms.
However, the proof is not as straightforward as the intuitionistic case. We require
the following definition of modular proof-terms. These are proof terms in which
applications of intuitionistic reasoning never occur after (are “modular” with
respect to) process building rules (parallel) or (union) for a non-Harrop formulae.

198 I. Poernomo

Definition 7. A proof-term t is modular if, and only if, it does not contain sub-
terms of the form cons(a, bC⇒D) where C is non-Harrop and a contains subterms
of the form parallel(p, q) or union(p, q).

Soundness of extraction is provable for modular proofs.

Theorem 3 (Soundness of modular proof extraction)
Consider any modular proof (rg
G. It is true that extract(p) mr a) G.

In general Theorem 3 does not hold. To see this, consider the following example.

Example 6. Recall the online dating example (Example 5) above. Let PO(x)
and PS(y) be predicates over XML sheets holding, respectively, when x is a list
of requirements specifying a female nonsmoker in their 20s, and when y is the
best match for the user requirements. Take the proof (we omit proof-terms for
the sake of space) where the all subtress are modular:

! (p view a) ∃x : XML • PO(x)
! (q view b) ∃x : XML • PO(x) (parallel)

! (p view a)|(q view b) ∃x : XML • PO(x)
!Int ∃x : XML • PO(x) ⇒

∃y : XML • PS(y)

(p view a)|(q view b) ∃y : XML • PS(y)
(cons)

The process (p view a)|(q view b) is not a realizer of ∃y : XML•PS(y), because
the views a and b are, by assumption of proof modularity, witnesses for the
requirements list x in ∃x : XML • PO(x), and the fact that the XML schema
for a requirements list is different from that of a matching date.

By intuitionistic extraction, the proof of the intuitionistic inference corre-
sponds to a function f that transforms a list of requirements into a matching
date. The required process can be obtained by applying the matching function
POtoPS repeatedly to the two inner views a and b. This yields the correct
process realizer

(p view POtoPS(a))|(q view POtoPS(b))

This can be obtained by the IHM extraction extract map and Theorem 3,
if we first transform the proof-term for the above proof into a form where all
applications of (cons) occur prior to application of (parallel), where A stands for
∃x : XML • PO(x) ⇒ ∃y : XML • PS(y):

! (p view a)
∃x : XML • PO(x) !Int A

! (p view a) ∃y : XML • PS(y)
(cons)

! (q view b)
∃x : XML • PO(x) !Int A

! (q view b) ∃y : XML • PS(y)
(cons)

! (p view a)|(q view b) ∃y : XML • PS(y)

If we have a systematic way of transforming non-modular proof-terms into
equivalently typed modular proof-terms, then we can use the extraction map
and Theorem 3 to obtain correct processes from proofs. This transformation is
done via a normalization strategy that moves all applications of the (cons) rule
up a derivation, before applications of other structural rules, in the fashion of
our example. The strategy is given by a normalization relation �, as defined by

Synthesis of Data Views for Communicating Processes 199

app(abstract X. a(A⇒B), bA) � a[b/X]B

specific(use x : s. a∀x:s•A, v : s) � a[v/x]A[v/x]

π1(〈a, b〉(A∧B)) � aA

π2(〈a, b〉(A∧B)) � bB

case inl(a)A∨B of inl(xA).bC , inr(yB).cC � b[a/x]C

case inr(a)A∨B of inl(xA).bC , inr(yB).cC � c[a/y]C

select (show(v, a)∃y:s•P) in z.xP [z/y].bC � b[a/x][v/z]C

cons(parallel(pa�A, qb�A), rA⇒C) � parallel(cons(p, r), cons(q, r))a|b�C

cons(union(pa�A, qb�A), rA⇒C) � union(cons(p, r), cons(q, r))a+b�C

Fig. 7. The reduction rules that define �

the rules in Fig. 7. This is the usual normalization relation (β reduction) adapted
to our lambda calculus of proof-terms and to moving structural rules.

The strong normalization property tells us that the normalization process over
a calculus will always terminate. To show that this property holds over our cal-
culus, we need to show that the proof-terms are strongly normalizable, posessing
only finite reduction sequences that result in normal, irreducible proof-terms.

Lemma 1. After normalization, all proof-terms are modular.

Then, by Theorem 1, Lemma 1 and Theorem 3, we can normalize proof-terms
and then apply extract to obtain required process realizers from any proof of a
specification.

6 Related Work and Conclusions

There are a number of UML-based approaches to developing distributed systems
– see, for example [1,2]. However, while all such systems also involve develop-
ment of data views, these approaches do not accommodate explicit data view
specification. At best, any UML-based approach permits data view specifications
to form part of a distributed interaction protocol specification, which could be
interpreted in our version of the CCS.

Very few attempts exist that adapt proofs-as-programs methods to distributed
systems synthesis. Stirling presents a constructive version of Hennessy-Milner
logic in [9], but did not use its constructive properties for program synthesis. A
similar calculus is used in [3] for this purpose, but, rather than using a transfor-
mative extraction mapping, they directly take the modal proofs as distributed
programs. Proof-terms for the various modalities are understood as remote pro-
cedure calls, commands to broadcast computations to all nodes in the network,
commands to use portable code and commands to invoke computational agents.
An important difference between our approach and these methods is that they
are not concerned with data view synthesis, while this is our primary focus.
To the best of our knowledge, proofs-as-program style synthesis has never been
adapted for synthesis of distributed programs with data views, nor to the case
of assertion generation.

200 I. Poernomo

Our results show a successful and practical approach to merging constructive
proofs-as-programs with a Hennessy-Milner logic. We retain the advantages of
both methods, using them to target their concerns separately. Hennessy-Milner
logic is retained to reason about and develop the behaviour of processes. Con-
structive realizability is adapted to reason and develop functional views of pro-
cesses. Throughout the extraction process, programs with both aspects are syn-
thesized from proofs.

References

1. Apvrille, L., de Saqui-Sannes, P., Lohr, C., Snac, P., Courtiat, J.-P.: A new UML
profile for real-time system formal design and validation. In: Gogolla, M., Kobryn,
C. (eds.) UML 2001. LNCS, vol. 2185, Springer, Heidelberg (2001)

2. Gomaa, H.: Designing concurrent, distributed, and real-time applications with UML.
In: ICSE 2001: Proceedings of the 23rd International Conference on Software Engi-
neering, pp. 737–738. IEEE Computer Society Press, Los Alamitos

3. Jia, L., Walker, D.: Modal proofs as distributed programs (extended abstract). In:
Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 219–233. Springer, Heidelberg
(2004)

4. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Transactions on Software Engineer-
ing 26(1), 70–93 (2000)

5. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

6. OMG.UML Superstructure v2.0. Technical report, Object Management Group
(2003), http://www.omg.org/cgi--bin/doc?ptc/2003-08-02

7. Poernomo, I., Crossley, J., Wirsing, M.: Adapting Proofs-as-Programs: The Curry-
Howard Protocol. In: Monographs in Computer Science, Springer, Heidelberg (2005)

8. Simpson, A.K.: Compositionality via cut-elimination: Hennessy-milner logic for an
arbitrary gsos. In: LICS 1995, Proceedings 10th Annual IEEE Symposium on Logic
in Computer Science, San Diego, California, USA, 26-29 June 1995, pp. 420–430.
IEEE Computer Society Press, Los Alamitos (1995)

9. Stirling, C.: Modal logics for communicating systems. Theoretical Computer Sci-
ence 49, 311–347 (1987)

http://www.omg.org/cgi--bin/doc?ptc/2003-08-02

Action Refinement in Process Algebra and

Security Issues�

Annalisa Bossi1, Carla Piazza2, and Sabina Rossi1

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italy
{bossi,srossi}@dsi.unive.it

2 Dipartimento di Matematica e Infomatica, Università di Udine, Italy
carla.piazza@dimi.uniud.it

Abstract. In the design process of distributed systems we may have to
replace abstract specifications of components by more concrete specifi-
cations, thus providing more detailed design information. In the context
of process algebra, this well-known approach is often referred to as ac-
tion refinement. We study the relationships between action refinement
and security properties within the Security Process Algebra (SPA). First
we formalize the concept of action refinement as a structural inductive
transformation. Then we prove several compositional results which can
be exploited in the stepwise development of processes. Finally, we con-
sider information flow security properties for SPA processes and define
a decidable class of secure processes which is closed under refinement.

1 Introduction

In the development of a complex system it is common practice first to describe
it succinctly as a simple abstract specification and then to stepwise refine it to-
wards a more concrete implementation. This hierarchical specification approach
has been successfully developed for sequential systems where abstract-level in-
structions are expanded until a concrete implementation is reached (e.g., [28]).

In the context of process algebra, the refinement methodology amounts to
defining a mechanism for replacing abstract actions with more concrete terms.
We adopt the terminology action refinement [16] to refer to this stepwise de-
velopment of systems specified as terms of a process algebra. In the literature,
action refinement is also referred to as vertical refinement as opposed to horizon-
tal refinement indicating any transformation of a system making it more nearly
executable, for instance more deterministic, without adding new actions or ex-
panding sub-computations. The latter is usually expressed in terms of pre-orders
such as trace inclusion or simulation. We studied the relationships between this
second form of refinement and information flow security in [3]. However, we can-
not use the results obtained in [3] to deal with vertical refinement since the two
forms of refinement provide orthogonal mechanisms for program development.
� Supported by the MIUR projects 2005015785 “Fondamenti Logici dei Sistemi Distri-

buiti e Codice Mobile” and 2005015491 “Vincoli per la programmazione con insiemi,
l’analisi di sistemi con automi, il ragionamento su intervalli e la bioinformatica”.

King, A. (Ed.): LOPSTR 2007, LNCS 4915, pp. 201–217, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

202 A. Bossi, C. Piazza, and S. Rossi

In process algebra, action refinement is usually defined in languages including
a sequential composition operator “;” that allows one to syntactically substitute
a process for an action. So, for instance, the refinement of r in the process
a; r; b;0 with the process F can be defined as the process a; F ; b;0. This is
the most followed approach (see, e.g., [1,15]). However, many process algebras,
e.g., CCS, do not include the sequential composition operator. Thus in order
to support action refinement, action-prefixing is usually replaced by sequential
composition. As noticed in [1] this modification requires to introduce a suitable
notion of termination and to consequently adapt the semantic equivalences.

Here we follow a different approach and instead of modifying our language,
we define action refinement as a structural inductive transformation. We model
action refinement as a ternary function Ref taking as arguments an action r
to be refined, a system description E on a given level of abstraction and an
interpretation of the action r on this level by a more concrete process F on a
lower abstraction level. The refined process, denoted by Ref (r, E, F), is intended
to be obtained from E by expanding each occurrence of r in E through F . We
assume that the process F indicates its termination by a distinguished label
done, i.e., following Milner’s terminology (see [20]), F is well-terminating. The
refined process is obtained by applying a structural inductive transformation
based on the Before operator defined in [20] as:

Before[F, E] def= (F [f̄ /done]|f.E) \ {f}.

For instance, if E is the process r.a.0 where r is the action we intend to refine
by the process F

def= b1.b2.done.0, the refined process, denoted by Ref (r, E, F),
will be the process Before[F, E] def= (b1.b2.f̄ .0|f.a.0) \ {f} which corresponds
to the sequential composition of processes F and a.0, and hence it models the
substitution of the action r in E with F . In practice we follow the static syntactic
approach to action refinement (see, e.g., [22]).

The main motivation behind our approach is that of studying the relationships
between action refinement and security. Indeed, in system development, it is im-
portant to consider security related issues from the very beginning. Considering
security only at the final step could lead to a poor protection, or, even worse,
could make it necessary to restart the development from scratch. On the other
hand, taking into account security from the abstract specification level, better
integrates it in the whole development process, possibly driving some implemen-
tation choices. A security-aware stepwise development requires that the security
properties of interest are either preserved or gained during the development
steps, until a concrete (i.e., implementable) specification is obtained.

In this paper we consider information flow security properties [11,14,18,23],
i.e., properties that allow one to express constraints on how information should
flow among different groups of entities. These properties are formalized by con-
sidering two groups of entities labelled with two security levels: high (H) and
low (L). The only constraint is that no information should flow from H to L.
In [2] we studied persistent information flow security properties for the Secu-
rity Process Algebra (SPA) introduced in [11]. These properties are obtained as

Action Refinement in Process Algebra and Security Issues 203

instances of a generalized unwinding condition which requires that each high level
action is “simulated” in such a way that it is impossible for the low level user
to infer which high level actions have been performed. This general framework
allows us to uniformly deal with some decidable subclasses of the well-known
NDC and BNDC properties for SPA processes defined in [11]. The fact that we
do not modify our language to introduce action refinement allows us to reason
on the relationships between action refinement and the security properties of
SPA processes. In particular, we study the conditions under which our notions
of security are preserved under action refinement.

The paper is organized as follows. Section 2 introduces the SPA language.
In Section 3 we formalize the notion of action refinement and provide some
compositionality results. In Section 4 we introduce our information flow security
properties and define decidable classes of secure processes which are closed under
action refinement. Finally, in Section 5 we discuss some related work. The proofs
of the results presented in this paper are reported in [5].

2 The SPA Language

The Security Process Algebra (SPA) language [11] is a variation of Milner’s CCS
[20] where the set of visible actions is partitioned into two security levels, high
and low, in order to specify multilevel systems. The SPA syntax is based on: a
set L = I ∪O of visible actions where I = {a, b, . . .} is a set of input actions and
O = {ā, b̄, . . .} is a set of output actions; a special action τ which models internal
computations, not visible outside the system; a function ·̄ : L → L, such that
¯̄a = a, for all a ∈ L. Act = L ∪ {τ} is the set of all actions. The set of visible
actions is partitioned into two sets, H and L, of high and low security actions
such that H = H and L = L. The syntax of SPA terms is as follows1:

T ::= 0 | Z | a.T | T + T | T |T | T \ v | T [f] | recZ.T

where Z is a variable, a ∈ Act , v ⊆ L, f : Act → Act is such that f(l̄) = f(l)
for l ∈ L, f(τ) = τ , f(H) ⊆ H ∪ {τ}, and f(L) ⊆ L ∪ {τ}. We apply the
standard notions of free and bound (occurrences of) variables in a SPA term.
More precisely, all the occurrences of the variable Z in recZ.T are bound ; while
an occurrence of Z is free in a term T if it is not bound. A SPA process is a
SPA term without free variables. We denote by E the set of all SPA processes,
ranged over by E, F, G, . . . We introduce also a notion of bound and free actions.
We say that an action a is bound in a term T if it belongs to a restriction, i.e.,
\v occurs in T and a ∈ v, or is used in a relabelling operator, i.e., f occurs in T
and f(a)
= a or f(b) = a for b
= a. We identify SPA terms up to α-conversion,
thus we can assume that a bound action can occur only in a restriction or a
relabelling operator or in their scopes. Hence, the set of actions occurring in a
term T can be split into two disjoint sets: the set bound(T) of actions which are
bound in T and the set free(T) of actions which are not bound in T .
1 Actually in [11] recursion is introduced through constant definitions instead of the

rec operator.

204 A. Bossi, C. Piazza, and S. Rossi

Prefix
a.E

a→ E

Sum
E1

a→ E′
1

E1 + E2
a→ E′

1

E2
a→ E′

2

E1 + E2
a→ E′

2

Parallel
E1

a→ E′
1

E1|E2
a→ E′

1|E2

E2
a→ E′

2

E1|E2
a→ E1|E′

2

E1
l→ E′

1 E2
l̄→ E′

2

E1|E2
τ→ E′

1|E′
2

Restriction
E

a→ E′

E \ v
a→ E′ \ v

if a, ā �∈ v

Relabelling
E

a→ E′

E[f]
f(a)→ E′[f]

Recursion
T [recZ.T [Z]]

a→ E′

recZ.T [Z]
a→ E′

with a ∈ Act and l ∈ L.

Fig. 1. The operational semantics of SPA terms

The operational semantics of SPA processes is given in terms of Labelled Tran-
sition Systems (LTS). In particular, the LTS (E ,Act ,→), whose states are pro-
cesses, is defined by structural induction as the least relation generated by the
axioms and inference rules reported in Figure 1. The operational semantics for
an agent E is the subpart of the SPA LTS reachable from the initial state E.

Intuitively, 0 is the empty process that does nothing; a.E is a process that
can perform an action a and then behaves as E; E1 + E2 represents the nonde-
terministic choice between the two processes E1 and E2; E1|E2 is the parallel
composition of E1 and E2, where executions are interleaved, possibly synchro-
nized on complementary input/output actions, producing the silent action τ ;
E \ v is a process E prevented from performing actions in v; E[f] is the process
E whose actions are renamed via the relabelling function f ; if Z is a free variable
in T , then recZ.T [Z] is the recursive process which can perform all the actions
of the process obtained by substituting recZ.T [Z] to the place-holder Z in T [Z].

We will use the following notations. If t = t1 · · · tn ∈ Act∗ and E
t1→ · · · tn→ E′,

then we write E
t→ E′ and we say that E′ is reachable from E, also denoted by

E � E′. We denote by Reach(E) the set of all processes reachable from E. We
also write E

t=⇒ E′ if E(τ→)∗ t1→ (τ→)∗ · · · (τ→)∗ tn→ (τ→)∗E′ where (τ→)∗ denotes
a (possibly empty) sequence of τ labelled transitions. If t ∈ Act∗, then t̂ ∈ L∗ is
the sequence gained by deleting all occurrences of τ from t. As a consequence,

Action Refinement in Process Algebra and Security Issues 205

E
â=⇒ E′ stands for E

a=⇒ E′ if a ∈ L, and for E(τ→)∗E′ if a = τ (note that τ=⇒
requires at least one τ transition while τ̂=⇒ means zero or more τ transitions).

The concept of behavioral equivalence is used to establish equalities among
processes and it is based on the idea that two processes have the same semantics
if and only if their behavior cannot be distinguished by an external observer. We
recall here the definition of strong bisimulation [20], which equates two processes
when they are able to mutually simulate their behavior step by step.

Definition 1 (Strong Bisimulation). A symmetric binary relation R ⊆ E×E
over processes is a strong bisimulation if (E, F) ∈ R implies, for all a ∈ Act, if
E

a→ E′, then there exists F ′ such that F
a→ F ′ and (E′, F ′) ∈ R.

Two processes E and F are strongly bisimilar, denoted by E ∼ F , if there
exists a strong bisimulation R containing the pair (E, F).

A SPA term with free variables is called context2. If C[Y1, . . . , Yn] is a context
with free variables Y1, . . . , Yn, then we denote by C[T1, . . . , Tn] the term obtained
from C[Y1, . . . , Yn] by simultaneously replacing all the occurrences of Y1, . . . , Yn

with the terms T1, . . . , Tn, respectively. For instance, if C[X] def= h.0|(l.X + τ.0)
and D[X, Y] def= (l.X + τ.0)|Y are contexts, then the notation C[h̄.0] stands for
h.0|(l.h̄.0 + τ.0), while the notation D[h̄.0, l̄.0] stands for (l.h̄.0 + τ.0)|l̄.0.

Finally, observe that our calculus does not provide a sequential composition
operator. However, following Milner [20], we can define it by introducing the con-
vention that processes indicate their termination by a distinguished label done.

Definition 2 (Strongly Well-terminating process). Let F be a SPA pro-
cess. F is strongly well-terminating if for every F ′ ∈ Reach(F) it holds:

(1) F ′ done→ is impossible;
(2) if F ′ α→ 0 then F ′ ∼ done.0;

(3) if F ′ done→ then F ′ ∼ done.0.

Our definition is a slight variation of Milner’s notion of well-termination. The
latter simply consists of points (1) and (3) above (point (2) is omitted) and thus
it models the class of processes which may indicate their termination but they
may also not indicate it. Although the theory developed in this paper holds also
for Milner’s definition, we prefer to adopt the strong notion of well-termination
since it leads to a more meaningful notion of refinement.

When F is strongly well-terminating, the sequential composition of processes
F and E can be defined through the operator Before introduced by Milner in [20].

Definition 3 (Before operator). Let E be a SPA term and F be a SPA pro-
cess such that F is strongly well-terminating.

Before [F, E] def= (F [f̄ /done]|f.E) \ {f}

where f̄ /done denotes the relabelling function replacing done with a new name f̄ .
2 Notice that a SPA term denotes either a process or a context.

206 A. Bossi, C. Piazza, and S. Rossi

3 Action Refinement

It is standard practice in software development to obtain the final program by
first defining an abstract, possibly not executable, specification and then refining
it until one arrives to a concrete specification that can directly be implemented.
Abstract operations are replaced by more detailed programs which can possibly
be further refined. In the context of process algebra, this stepwise development
amounts to interpreting actions on a higher level of abstraction by more complex
processes on a lower level. This is obtained by introducing a mechanism to trans-
form actions into processes. There are several ways to do this. Here we follow a
syntactic approach defining the refinement as a syntactic process transformation.

3.1 Action Refinement for SPA Processes

To define action refinement we need to specify (1) which are the processes F
that can be used to refine a process E and (2) which are the actions r refinable
in E. A process F can be used to refine a process E only if the free actions of
E do not occur bound in F , and vice-versa. Notice that this condition is not
restrictive since, by α-conversion, we can always assume that the two processes
do not share bound actions. Moreover, we require that F is different from 0 and
that it is strongly well terminating. In this case we say that F is pluggable in E.

Definition 4 (Pluggable terms). Let E be a SPA term and F be a SPA
process. F is pluggable in E if

(a) bound(E) ∩ free(F) = bound(F) ∩ free(E) = ∅;
(b) F is not the process 0;
(c) F is strongly well-terminating.

Notice that in the above definition E is a SPA term, i.e., it may have free
variables. This is necessary to allow us to define the notion of refinement by
structural induction on E.

If F is pluggable in E, then an abstract action r occurring in E is refinable
with F if r is not bound in E and it does not occur in F otherwise we would
enter into an infinite loop of refinements. All these requirements are formalized
in the following notion of refinability.

Definition 5 (Refinable actions). Let E be a SPA term, F be a SPA process,
and r ∈ L. The action r is said to be refinable in E with F if:

(a) F is pluggable in E;
(b) r
∈ bound(E);
(c) r does not occur in F .

Example 1. Consider the processe E
def= (r.a.0|ā.b.0) \ {a, ā} and the process

F
def= c.d.done.0. In this case the action r is refinable in E with F .
Consider now the process E as above and F1

def= (b.done.0+ c.d.done.0) \ {b}.
In this case condition (a) of Definition 4 is not satisfied since bound(F1) ∩

Action Refinement in Process Algebra and Security Issues 207

free(E) = {b}
= ∅. Hence r is not refinable in E with F1. However, it is im-
mediate to see that we can exploit α-conversion and transform F1 into F2

def=
(e.done.0 + c.d.done.0) \ {e}. Now, r is refinable in E with F2. ��

The intended meaning of the refinement of an abstract action r in a process E
with a refining process F is that of expanding each occurrence of r in E by F .
In order to support action refinement, in the literature the prefixing operator is
usually replaced by sequential composition ”;” [1,15]. Here we follow a different
approach and model sequential composition by using a construction based on
well-terminating processes and the Before operator as suggested in [20].

Let r be an action refinable in E with F . To define the refinement of E with
F we replace each occurrence of r in E through the Before operator having F
as first argument and the subprocess of E which follows r as second argument.
Thus, for instance the refinement of r in E

def= a.r.b.0 with F
def= c.d.done.0 is

obtained by replacing r.b.0 with Before[F, b.0], i.e., it is a.Before [c.d.done.0, b.0]
that is exactly a.(c.d.done.0[f̄/done]|f.b.0) \ {f}.

The notion of action refinement is defined by structural induction on the term
to be refined as follows:

Definition 6 (Action Refinement). Let E be a SPA term and F be a SPA
process such that r is an action refinable in E with F . The refinement of r in E
with F is the term Ref (r, E, F) inductively defined as follows:

(1) Ref (r,0, F) def= 0

(2) Ref (r, Z, F) def= Z

(3) Ref (r, r.E1, F) def= Before [F,Ref (r, E1, F)]
(4) Ref (r, a.E1, F) def= a.Ref (r, E1, F), if a
= r

(5) Ref (r, E1[f], F) def= Ref (r, E1, F)[f]
(6) Ref (r, E1 \ v, F) def= Ref (r, E1, F) \ v

(7) Ref (r, E1 + E2, F) def= Ref (r, E1, F) + Ref (r, E2, F)
(8) Ref (r, E1|E2, F) def= Ref (r, E1, F)|Ref (r, E2, F)
(9) Ref (r, recZ.E1, F) def= recZ.Ref (r, E1, F)

Point (3) of the above definition deals with the basic case in which we replace an
occurrence of r with the refining process F . If E

def= r.E1 and r is the only occur-
rence of r in E, then Ref (r, E, F) def= Before [F, E1]

def= (F [f̄ /done]|f.E1) \ {f}
representing the process which first behaves as F and then, when the execution
of F is terminated, proceeds as E1. In all the other cases the refinement pro-
cess enters inside the components of E. This is correct also when restriction or
relabelling operators are involved: indeed, condition (a) of Definition 4 ensures
that undesired bindings of actions will never occur, while condition (b) of Def-
inition 5 guarantees that we never refine restricted or relabelled actions. Point
(c) of Definition 5 is useful to prevent infinite loops of refinements.

208 A. Bossi, C. Piazza, and S. Rossi

Point (b) of Definition 4 requires that F is not the empty process. This choice
is motivated by the fact that in the literature there is no general agreement
on what an empty refinement, i.e., the refinement of an action into the empty
process, should be. In [25] actions refined into the empty process are simply
erased (forgetful refinements), while in [10] those actions are deadlocked since
the empty refinement is interpreted as an erroneous step in the top down devel-
opment procedure. In many other works the empty refinement is simply ignored
in order to avoid technical problems (see [1]). Here we follow this approach and
assume that the refining process is always non empty.

Finally, point (c) of Definition 4 requires that the refining process F is strongly
well-terminating. This allows us to define the sequential composition of SPA pro-
cesses in the spirit of [20]. In the literature, the sequential composition operator
”;” is just added to the language in order to allow, for instance, the refinement of
E

def= r.a.0 with F
def= b.0|c.0 obtaining the refined process (b.0|c.0); a.0. Using

our definition, F is not pluggable in E since it is not well-terminating. Notice
that we cannot simply replace the 0’s of F with done.0, since the resulting pro-
cess would not be well-terminating. However, following Milner [20], we can define
the strongly well-terminating parallel composition operator:

P Par Q
def= (P [f̄1/done] | Q[f̄2/done] | (f1.f2.done.0+ f2.f1.done.0)) \ {f1, f2}

The process P Par Q is strongly well-terminating and performs an action done
when and only when both component agents have terminated. Thus, in the above
example, we can use the well-terminating process b.done.0 Par c.done.0 to refine
the action r in E

def= r.a.0.

Example 2. Let E
def= r.a.0 + b.0 and F

def= c.done.0 + d.done.0. It is immediate
to observe that r is refinable in E with F . By applying Definition 6 we get:

Ref (r, E, F) def= Ref (r, r.a.0, F) + Ref (r, b.0, F)
def= Before [F,Ref (r, a.0, F)] + b.0
def= Before [F, a.0] + b.0
def= (c.done.0 + d.done.0[f̄/done]|f.a.0) \ {f} + b.0
∼ c.τ.a.0 + d.τ.a.0 + b.0.

��

Example 3. Let E
def= (a.r.b.0) \ {b} and F

def= c.d.done.0. Since bound(E) = {b}
and b does not occur in F , we have that r is refinable in E with F . Indeed:

Ref (r, E, F) def= (Ref (r, a.r.b.0, F)) \ {b}
def= (a.Ref (r, r.b.0, F)) \ {b}
def= (a.Before [F,Ref (r, b.0, F)]) \ {b}
def= (a.Before [F, b.0]) \ {b}
def= (a.(c.d.done.0[f̄/done]|f.b.0) \ {f}) \ {b}
∼ (a.c.d.τ.b.0) \ {b}.

Action Refinement in Process Algebra and Security Issues 209

Notice that, our notion of refinability does not allow us to directly refine r in E

with F1
def= b.d.done.0. However, we can first apply an α-conversion transforming

E into the equivalent process E1
def= (a.r.e.0)\{e} and then refine r in E1 with F1

getting, as expected, the refined process which behaves as (a.b.d.τ.e.0)\ {e}. ��

Example 4. Let E
def= a.r.b.0|r.c.0 and F

def= c.d.done.0. By applying our defini-
tion and by the example above we get:

Ref (r, E, F) def= Ref (r, a.r.b.0, F)|Ref (r, r.c.0, F)
def= (a.(c.d.done.0[f̄/done]|f.b.0) \ {f}) |

(c.d.done.0[f̄ /done]|f.c.0) \ {f}
∼ a.c.d.τ.b.0|c.d.τ.c.0.

As expected, the two occurrences of r in E are replaced by two copies of F . ��

From now on when we write Ref (r, E, F) we tacitly assume that r is refinable
in E with F . Notice that if r is refinable in E with F and E is strongly well-
terminating then also Ref (r, E, F) is strongly well-terminating.

3.2 Compositionality

At any fixed level of abstraction during the top-down development of a program,
it is unrealistic to think that there is just one action to be refined at that level.
Compositional properties of the refinement operation allow us to do not care
about the ordering in which the refinements occur.

First we show that our refinement can locally be applied to the subcomponents
in which the actions to be refined occur.

Lemma 1. Let C[Z1, . . . , Zn] be a SPA context, E1, . . . , En be SPA terms, F be
a SPA process, and r ∈ L be refinable in C[E1, . . . , En] with F . Then

Ref (r, C[E1, . . . , En], F) def= Ref (r, C, F)[Ref (r, E1, F), . . . ,Ref (r, En, F)].

In particular, if C is a context with no occurrences of r, the above lemma ensures
that Ref (r, C[E1, . . . , En], F) def= C[Ref (r, E1, F), . . . ,Ref (r, En, F)]. Therefore,
if we consider a process E of the form E1|E2| . . . |En and an action r occurring
only in Ei for some i, then it is sufficient to apply the refinement to Ei to obtain
Ref (r, E, F) def= E1| . . . |Ref (r, Ei, F)| . . . |En.

If we need to refine two actions in a term E, they can be swapped in the
following sense.

Lemma 2. Let E be a SPA term, F1, F2 be SPA processes, r1 and r2 be actions
refinable in E with F1 and F2, respectively. If r1 does not occur in F2, then

Ref (r2,Ref (r1, E, F1), F2)
def= Ref (r1, Ref(r2, E, F2),Ref (r2, F1, F2)).

In particular, if also r2 does not occur in F1, then

Ref (r2,Ref (r1, E, F1), F2)
def= Ref (r1,Ref (r2, E, F2), F1).

210 A. Bossi, C. Piazza, and S. Rossi

4 Preserving Security Properties under Refinement

In this section we first present some information flow security properties for SPA
processes. Then we investigate conditions under which our notions of security
are preserved under action refinement.

4.1 Security Properties

Information flow security in a multilevel system aims at guaranteeing that no
high level (confidential) information is revealed to users running at low security
levels [13,19], even in the presence of any possible malicious process (attacker).

In [11] Focardi and Gorrieri introduce the properties Non-Deducibility on
Compositions (NDC) and Bisimulation-based Non-Deducibility on Compositions
(BNDC) in order to capture every possible information flow from a classified
(high) level of confidentiality to an untrusted (low) one. The definitions of NDC
and BNDC are based on the basic idea of Non-Interference [14]: “No information
flow is possible from high to low if what is done at the high level cannot interfere
in any way with the low level”. More precisely, a system E is secure if what a
low level user sees of the system is not modified by composing any high process
Π to E. The concept of low observation is expressed in terms of an equivalence
relation on low level actions between processes. The idea is that two systems
cannot be distinguished by a low level observer if and only if they are equated
by an equivalence relation considering low level actions only. The two properties
NDC and BNDC differ only on the low level observation equivalence they con-
sider. NDC is based on trace equivalence on low actions, denoted by ≈l

T , while
BNDC considers the notion of weak bisimilarity on low actions, denoted by ≈l

B.
The definition of weak bisimilarity on low actions (trace equivalence on low

actions) is the same as the definition of weak bisimilarity [20] (trace equivalence)
except that low and silent actions only (belonging to the set L ∪ {τ}), instead
of all actions (belonging to the set Act), are considered.

Weak bisimilarity on low actions equates two processes if they are able to
mutually simulate their low level behavior step by step. Moreover, it does not
care about internal τ actions.

Definition 7 (Weak Bisimulation on Low Actions). A symmetric binary
relation R over processes is a weak bisimulation on low actions if (E, F) ∈ R
implies, for all a ∈ L ∪ {τ}, if E

a→ E′, then there exists F ′ such that F
â=⇒ F ′

and (E′, F ′) ∈ R.
Two processes E, F ∈ E are weakly bisimilar on low actions, denoted by

E ≈l
B F , if there exists a weak bisimulation on low actions R containing (E, F).

Trace equivalence on low actions equates two processes if they have the same
sets of low traces, again, without considering the τ actions.

Definition 8 (Trace Equivalence on Low Actions). The set of traces T l(E)
associated with a process E is defined by: T l(E) = {t ∈ (L∪ {τ})∗ | ∃E′ : E

t=⇒
E′}. Two processes E, F are trace equivalent on low actions, denoted by E ≈l

T F ,
if T l(E) = T l(F).

Action Refinement in Process Algebra and Security Issues 211

Trace equivalence on low actions is less demanding than weak bisimilarity on low
actions, hence if two processes are weakly bisimilar on low actions, then they are
also trace equivalent on low actions.

Properties BNDC and NDC are thus formally defined as follows:

E ∈ BNDC if for all high processes Π, E ≈l
B (E|Π)

E ∈ NDC if for all high processes Π, E ≈l
T (E|Π).

Since weak bisimilarity on low actions is stronger than trace equivalence on
low actions, it holds that BNDC implies NDC.

Properties NDC and BNDC are difficult to use in practice: NDC is not de-
cidable in polynomial time, while the decidability of BNDC is still an open
problem. In [12], Focardi and Rossi introduce the property Persistent BNDC
(P BNDC) which is a natural persistent extension of BNDC (i.e., a system E
is P BNDC if every state E′ reachable from E is BNDC) and it is a sufficient
condition for BNDC. They show the decidability of P BNDC by exploiting a
bisimulation based characterization. Other persistent security properties have
been later introduced, e.g., the properties Persistent NDC (P NDC) in [4] and
Compositional P BNDC (CP BNDC) in [2].

All the persistent properties mentioned above can be defined as instances of a
generalized unwinding condition [2] which requires that each high level action is
“simulated” in such a way that it is impossible for the low level user to infer which
high level actions have been performed. The generalized unwinding condition is
parametric with respect to two binary relations on processes: an equivalence
relation on low actions, 	l, which represents the low level view, and a transition
relation,

�, which characterizes a local connectivity.

Definition 9 (Generalized Unwinding). Let ∼l be an equivalence relation
on low actions and

� be a binary relation on processes. The unwinding class
W(l,

�) is defined as

W(l,

�) def= {E ∈ E | ∀ F, G ∈ Reach(E)
if F

h→ G then ∃G′ such that F

� G′ and G 	l G′}.

It holds that P NDC coincides with W(≈l
T ,

τ̂=⇒) [4], P BNDC coincides with

W(≈l
B,

τ̂=⇒) and CP BNDC coincides with W(≈l
B,

τ=⇒) [2]. Moreover, P NDC ⊆
NDC and P BNDC ,CP BNDC ⊆ BNDC .

Example 5. Let l ∈ L and h ∈ H . The process h.l.h.0 + τ.l.0 is P BNDC . The
process h.l.0 is not P BNDC . ��

Example 6. Let us consider a distributed data base (adapted from [16]) which
can take two values and which can be both queried and updated. In particular,
the high level user can query it through the high level actions qry1 and qry2,
while the low level user can only update it through the low level actions upd1

212 A. Bossi, C. Piazza, and S. Rossi

and upd2. Hence qry1, qry2 ∈ H and upd1, upd2 ∈ L. We can model the data
base with the SPA process E defined as

E
def= recZ.(qry1.Z + upd1.Z + τ.Z+

upd2.recW.(qry2.W + upd2.W + τ.W + upd1.Z)).

The process E is P BNDC . Indeed, whenever a high level user queries the data
base with a high level action moving the system to a state X then a τ action
moving the system to the same state X may be performed, thus masking the
high level interactions with the system to low level users. ��

4.2 Classes of Secure Processes Closed under Action Refinement

In this section we investigate conditions under which our notions of security
are preserved under action refinement. In particular, we are interested in the
definition of classes of processes satisfying an instance of W(∼l,

�) and closed
under action refinement.

We first introduce the concept of (P , r)-refinable contexts, where P is a process
property and r is an action. Intuitively, a class of contexts is (P , r)-refinable if
all processes in it satisfy P and it is closed under refinement of the action r.

Definition 10 ((P , r)-refinable contexts). Let P be a class of processes and
r be an action. A class C of contexts is said to be (P , r)-refinable if:

– if E ∈ C and E is a process, then E ∈ P;
– if E, F ∈ C and r is refinable in E with F then Ref (r, E, F) ∈ C.

We introduce a parametric definition of classes of contexts. Given a sequence s =
s1, s2, . . . , sn of actions, we denote by s.E the process s1.s2. . . . sn.E. Moreover,
given a set v of actions we denote by s∩ v the set of actions occurring both in s
and in v, while, given a relabelling f we denote by f [s] the set {si | f(si)
= si}.
A relation ◦ over terms is a congruence if C1[Z] ◦ C2[Z] and E1 ◦ E2 imply
C1[E1] ◦ C2[E2].

Definition 11 (C(+, s)). Let + be a reflexive congruence over SPA terms and
s be a sequence of actions. C(+, s) is the class of contexts containing: the process
0; Z, where Z is a variable; l.C1, h.C1 + s.C′

1, C1 \ v, C1[f], C1 + C2, C1|C2,
and recZ.C1, with l ∈ L ∪ {τ}, h ∈ H, C1 + C′

1, s ∩ v = ∅, f [s] = ∅, and
C1, C

′
1, C2 ∈ C(+, s).

Let

� be a binary relation on processes, we say that s entails

� if E
s→ E′

implies E

� E′. Let + be a binary relation on terms, we say that + is preserved
under refinement of action r if E + E′ implies Ref (r, E, F) + Ref (r, E′, F).

The following theorem provides sufficient conditions to ensure that all the pro-
cesses in the class C(+, s) are secure and the class itself is closed under refinement
of r.

Action Refinement in Process Algebra and Security Issues 213

Theorem 1. Let W(∼l,

�) be an unwinding condition. If s ∈ (L ∪ {τ})∗ is a
sequence of low and silent actions which entails

�, r is an action which does
not occur in s, + is a reflexive congruence preserved under refinement of r, and
+ ∩(E × E) ⊆∼l, then the class C(+, s) is (W(∼l,

�), r)-refinable.

Moreover, under the above conditions, if E and F are two processes such that
E, F ∈ C(+, s) and r is a refinable action in E with F , then Ref (r, E, F) ∈
W(∼l,

�) and Ref (r, E, F) ∈ C(+, s).

Let ≡ denote the syntactic equality between SPA terms. It is immediate to see
that ≡ is a reflexive congruence preserved under refinement and it is included
in ∼l for each binary relation ∼l over SPA terms. We can then instantiate the
above theorem with ≡ as the relation +, obtaining the following corollary.

Corollary 1. Let W(∼l,

�) be an unwinding condition. If s ∈ (L∪ {τ})∗ is a
sequence of low and silent actions which entails

�, r is an action which does
not occur in s, then the class C(≡, s) is (W(∼l,

�), r)-refinable.

Moreover, under the above conditions, if E and F are two processes such that
E, F ∈ C(≡, s) and r is a refinable action in E with F , then Ref (r, E, F) ∈
W(∼l,

�) and Ref (r, E, F) ∈ C(≡, s).

Example 7. Consider again the abstract specification of the distributed data base
represented through the SPA process E of Example 6. The process E belongs
to the class C(≡, τ) of Definition 11. In fact, C1

def= qry2.W + upd2.W + τ.W +
upd1.Z ∈ C(≡, τ), and then C2

def= recW.C1 ∈ C(≡, τ). Hence, C3
def= qry1.Z +

upd1.Z + τ.Z + upd2.C2 ∈ C(≡, τ). Therefore E
def= recZ.C3 ∈ C(≡, τ).

We can refine the update actions by requiring that each update is requested
and confirmed, i.e., we refine upd1 with F1

def= req1.cnf1.done.0 and upd2 with
F2

def= req2.cnf2.done.0, where req1, cnf1, req2, cnf2 are low security level ac-
tions. We obtain:

Ref (upd2,Ref (upd1, E, F1), F2)
def=

Ref (upd2,Ref (upd1, recZ.(qry1.Z + upd1.Z + τ.Z+
upd2.recW.(qry2.W + upd2.W + τ.W + upd1.Z)), F1), F2)

def=
recZ.(qry1.Z + (req1.cnf1.done.0[f̄/done]|f.Z) \ {f} + τ.Z+

(req2.cnf2.done.0[f̄ /done]|f.(recW.(qry2.W+
(req2.cnf2.done.0[f̄ /done]|f.W) \ {f}+
τ.W + (req1.cnf1.done.0[f̄/done]|f.Z) \ {f})) \ {f} ∼

recZ.(qry1.Z + req1.cnf1.τ.Z + τ.Z+
req2.cnf2.τ.recW.(qry2.W + req2.cnf2.τ.W + τ.W + req1.cnf1.τ.Z)).

Since F1 and F2 are in C(≡, τ) and τ entails τ̂=⇒, by applying Corollary 1 we
have that the process Ref (upd2,Ref (upd1, E, F1), F2) is in W(≈l

B,
τ̂=⇒), i.e., it

is P BNDC . ��

Another binary relation over SPA terms, which can be used to find sufficient
and decidable conditions for proving both P NDC and P BNDC is the relation
� defined as follows: E1 � E2 if and only if E1 ≡ E2 or E1 ∼ E2 and E1, E2

214 A. Bossi, C. Piazza, and S. Rossi

are high level processes (i.e., they have neither variables nor low level actions)
or E1 ≡ D1[E′

1] and E2 ≡ D2[E′
2], with D1[Z] � D2[Z] and E′

1 � E′
2.

By instantiating + with � and s with τ we obtain the class C(�, τ) which
is decidable with the proof system presented in the Appendix. By exploiting
Theorem 1, we can prove that the class of secure processes C(�, τ) is closed
under refinement of low level actions, as stated by the following corollary.

Corollary 2. The class C(�, τ) is both (P NDC , r)-refinable and (P BNDC , r)-
refinable, for all low level actions r ∈ L.

The proof follows from the fact that P NDC coincides with W(≈l
T ,

τ̂=⇒),

P BNDC coincides with W(≈l
B,

τ̂=⇒), and τ entails τ̂=⇒. In order to prove that
� is preserved under refinement we exploit Lemma 1.

Notice that we can obtain the same result by replacing ∼ (strong bisimulation)
in the definition of � with any congruence included in ≈l

B. For instance we can
use the weak progressing bisimulation defined in [21].

5 Conclusions and Related Works

In this paper we study the relationships between action refinement and informa-
tion flow security within the Security Process Algebra (SPA).

Action refinement has been extensively studied in the literature. There are
essentially two interpretations of action refinement: semantic and syntactic (see
[15]). In the semantic interpretation an explicit refinement operator, written
E[r → F], is introduced in the semantic domain used to interpret the terms of
the algebra. The semantics of E[r → F] models the fact that r is an action of
E to be refined by the process F . In the syntactic approach, the same situation
is modelled by syntactically replacing r by F in E. The replacement can be
static, i.e., before execution, or dynamic, i.e., r is replaced as soon as it occurs
while executing E. In order to correctly formalize the replacement, the process
algebra is usually equipped with an operation of sequential composition (rather
than the more standard action prefix), as, e.g., in ACP, since otherwise it would
not be closed under the necessary syntactic substitution. Our approach to action
refinement follows the static, syntactic interpretation. The use of the Before
operator to realize the refinement allows us to keep the original SPA language
without introducing a sequential composition operator for processes.

In [1] Aceto and Hennessy introduce a static syntactic notion of action refine-
ment on a variation of CCS in which action-prefixing is replaced by sequential
composition and neither recursion nor relabellings are allowed. The semantics
of this language is expressed as a strong bisimilarity extended with a condition
on the termination of processes. Instead of extending the language, we follow
Milner’s approach and implement sequential composition by context operations.
This allows us to consider the full language with recursion and relabelling.

Action refinement is also classified as atomic or non-atomic. Atomic refine-
ment is based on the assumption that actions are atomic and their refinements

Action Refinement in Process Algebra and Security Issues 215

should in some sense preserve this atomicity (see, e.g.,[9,6]). As an example, con-
sider the processes E

def= r.0|b.0 and F
def= a1.a2.done.0. The atomic refinement

of r in E with F should be a process where r is replaced by F and the execution
of a1.a2 is non-interruptible, i.e., action b cannot be executed in between the ex-
ecution of a1 and a2. On the other hand, non-atomic refinement is based on the
view that atomicity is always relative to the current level of abstraction and may,
in a sense, be destroyed by the refinement (see, e.g., [1,10,26]). Unfortunately, the
standard behavioral equivalences of CCS, such as strong and weak bisimulation
and trace equivalence, are not preserved under non-atomic refinements. In the
literature different equivalences based on non-interleaving semantics which are
preserved under refinement have been studied (see, e.g., [7,27]). In this paper we
follow the non-atomic approach. Actually, this approach is on the whole more
popular than the former.

Recently in [24], Seehusen and Stølen addressed the problem of preserving
trace-based security properties under transformations from an abstract specifi-
cation to a concrete one. The particular transformations they deal with may be
understood as a special case of action refinement where the concrete specifica-
tion is generated automatically from the abstract specification. The information
flow security framework presented in the paper is inspired by [18] and is based
on the composition of basic security predicates. This approach is quite simple
and allows one to capture many trace-based properties expressed over event sys-
tems. Following Jacob’s observations [17], the authors notice that information
flow properties are in general not preserved by the standard notions of refine-
ment. As argued by Jacob, the problem originates from the inability of most
specification languages to distinguish between the two sources of nondetermin-
ism, named, underspecification and unpredictability. The authors then propose
to refine the notion of refinement and that of secure information flow such that
this distinction is taken into consideration. Based on this approach they propose
quite ad hoc conditions under which transformations maintain security.

In the literature the term refinement is also used to indicate any transforma-
tion of a system that can be justified because the transformed system implements
the original one on the same abstraction level, by being more nearly executable,
for instance more deterministic. The implementation relation is expressed in
terms of pre-orders such as trace inclusion or various kinds of simulation. Many
papers in this tradition can be found in [8]. The relations between this form
of refinement and information flow security have been studied in [3]. Although
both action refinement and the refinement considered in [3] aim at transforming
a system specification into a more executable one, the principles behind the two
kinds of transformations are completely different, and thus a comparison is not
meaningful.

Acknowledgments

We would like to acknowledge the anonymous referees of the preliminary version
of the paper for their useful comments and suggestions.

216 A. Bossi, C. Piazza, and S. Rossi

References

1. Aceto, L., Hennessy, M.: Adding Action Refinement to a Finite Process Algebra.
Information and Computation 115(2), 179–247 (1994)

2. Bossi, A., Focardi, R., Macedonio, D., Piazza, C., Rossi, S.: Unwinding in Informa-
tion Flow Security. Electronic Notes in Theoretical Computer Science 99, 127–154
(2004)

3. Bossi, A., Focardi, R., Piazza, C., Rossi, S.: Refinement Operators and Information
Flow Security. In: Proc. of the 1st IEEE Int. Conference on Software Engineering
and Formal Methods (SEFM 2003), pp. 44–53. IEEE Computer Society Press, Los
Alamitos (2003)

4. Bossi, A., Piazza, C., Rossi, S.: Modelling Downgrading in Information Flow Secu-
rity. In: Proc. of the 17th IEEE Computer Security Foundations Workshop (CSFW
2004), pp. 187–201. IEEE Computer Society Press, Los Alamitos (2004)

5. Bossi, A., Piazza, C., Rossi, S.: Action Refinement in Process Algebra and Security
Issues. Technical Report CS-2007-8, Dipartimento di Informatica, Università Ca’
Foscari di Venezia, Italy (2007)

6. Boudol, G.: Atomic Actions. Bulletin of the EATCS 38, 136–144 (1989)
7. Bravetti, M., Gorrieri, R.: Deciding and axiomatizing weak ST bisimulation for a

process algebra with recursion and action refinement. ACM Transaction on Com-
putational Logic 3(4), 465–520 (2002)

8. de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.): REX 1989. LNCS,
vol. 430. Springer, Heidelberg (1990)

9. de Bakker, J.W., de Vink, E.P.: Bisimulation Semantics for Concurrency with
Atomicity and Action Refinement. Fundamenta Informaticae 20(1), 3–34 (1994)

10. Degano, P., Gorrieri, R.: A Causal Operational Semantics of Action Refinement.
Information and Computation 122(1), 97–119 (1995)

11. Gorrieri, R., Focardi, R.: Classification of Security Properties (Part I: Information
Flow). In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2001. LNCS, vol. 2171, Springer,
Heidelberg (2001)

12. Focardi, R., Rossi, S.: Information Flow Security in Dynamic Contexts. Journal of
Computer Security 14(1), 65–110 (2006)

13. Foley, S.N.: A Universal Theory of Information Flow. In: Proc. of the IEEE Sym-
posium on Security and Privacy (SSP 1987), pp. 116–122. IEEE Computer Society
Press, Los Alamitos (1987)

14. Goguen, J.A., Meseguer, J.: Security Policies and Security Models. In: Proc. of the
IEEE Symposium on Security and Privacy (SSP 1982), pp. 11–20. IEEE Computer
Society Press, Los Alamitos (1982)

15. Goltz, U., Gorrieri, R., Rensink, A.: Comparing Syntactic and Semantic Action
Refinement. Information and Computation 125(2), 118–143 (1996)

16. Gorrieri, R., Rensink, A.: Action Refinement. Technical Report UBLCS-99-09, Uni-
versity of Bologna (Italy) (1999)

17. Jacob, J.: On the Derivation of Secure Components. In: Proc. of the IEEE Sympo-
sium on Security and Privacy (SSP 1989), pp. 242–247. IEEE Computer Society
Press, Los Alamitos (1989)

18. Mantel, H.: Possibilistic Definitions of Security - An Assembly Kit -. In: Proc. of
the IEEE Computer Security Foundations Workshop (CSFW 2000), pp. 185–199.
IEEE Computer Society Press, Los Alamitos (2000)

19. McLean, J.: Security Models and Information Flow. In: Proc. of the IEEE Sym-
posium on Security and Privacy (SSP1990), pp. 180–187. IEEE Computer Society
Press, Los Alamitos (1990)

Action Refinement in Process Algebra and Security Issues 217

20. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

21. Montanari, U., Sassone, V.: CCS Dynamic Bisimulation is Progressing. In: Tarlecki,
A. (ed.) MFCS 1991. LNCS, vol. 520, pp. 346–356. Springer, Heidelberg (1991)

22. Nielsen, M., Engberg, U., Larsen, K.S.: Fully Abstract Models for a Process Lan-
guage with Refinement. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G.
(eds.) Linear Time, Branching Time and Partial Order in Logics and Models for
Concurrency. LNCS, vol. 354, pp. 523–548. Springer, Heidelberg (1989)

23. Sabelfeld, A., Myers, A.C.: Language-Based Information-Flow Security. IEEE Jour-
nal on Selected Areas in Communication 21(1), 5–19 (2003)

24. Seehusen, F., Stølen, K.: Maintaining Information Flow Security Under Refinement
and Transformation. In: Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider,
S. (eds.) FAST 2006. LNCS, vol. 4691, pp. 143–157. Springer, Heidelberg (2007)

25. van Glabbeek, R.J., Goltz, U.: Equivalence Notions for Concurrent Systems and
Refinement of Actions. In: Kreczmar, A., Mirkowska, G. (eds.) MFCS 1989. LNCS,
vol. 379, pp. 237–248. Springer, Heidelberg (1989)

26. van Glabbeek, R.J., Goltz, U.: Refinement of Actions and Equivalence Notions for
Concurrent Systems. Acta Informatica 37(4/5), 229–327 (2001)

27. van Glabbeek, R.J., Vaandrager, F.W.: The Difference between Splitting in n and
n+1. Information and Computation 136(2), 109–142 (1997)

28. Wirth, N.: Program Development by Stepwise Refinement. Communications of the
ACM 14(4), 221–227 (1971)

Author Index

Abdennadher, Slim 106
Albert, Elvira 23

Bossi, Annalisa 201
Braßel, Bernd 90

Carro, Manuel 138
Casas, Amadeo 138
Christiansen, Jan 90
Codish, Michael 1

De Schreye, Danny 8
Degrave, François 43
Demoen, Bart 59

Ferrari, Mauro 169
Fiorentini, Camillo 169
Fischer, Sebastian 74

Gallagher, John 23
Giesl, Jürgen 8
Gómez-Zamalloa, Miguel 23

Hermenegildo, Manuel V. 138, 154

Méndez-Lojo, Mario 154
Momigliano, Alberto 169

Navas, Jorge 154
Nguyen, Manh Thang 8
Nielson, Flemming 121

Ornaghi, Mario 169

Piazza, Carla 201
Poernomo, Iman 185
Puebla, Germán 23

Rossi, Sabina 201

Schneider-Kamp, Peter 8
Silva, Josep 74
Sneyers, Jon 59
Sobhi, Ingi 106

Tamarit, Salvador 74

Van Weert, Peter 59
Vanhoof, Wim 43
Vidal, Germán 74

Zhang, Ye 121

	Title Page
	Preface
	Organization
	Table of Contents
	Program Termination
	Proving Termination with (Boolean) Satisfaction
	Introduction
	Encoding Lexicographic Path Orders
	Encoding Argument Filterings
	Encoding Recursive Path Orders
	Experimental Results
	Other SAT Based Termination Analyses
	Summary

	Termination Analysis of Logic Programs Based on Dependency Graphs
	Introduction
	Preliminaries
	Dependency Graphs in Logic Programming
	Toward Automation
	A General Framework
	Generating Well-Founded Orders

	Conclusion

	Type-Based Homeomorphic Embedding and Its Applications to Online Partial Evaluation
	Introduction
	Basics on Embedding in Partial Evaluation
	Embedding with Infinite Signatures: Motivating Example
	Using the Original Homeomorphic Embedding
	Recovering Termination: Embedding with Number Filtering
	Increasing Accuracy: Static Symbols in the Program

	Type-Based Homeomorphic Embedding
	Types: Preliminaries and Notation
	Type-Based Homeomorphic Embedding

	Automatic Inference of Well-Typings
	Well-Typings for Working Example
	Experimental Results

	Type-Based Homeomorphic Embedding in Practice
	Automatic Inference of Finite Signature
	Experimental Results

	Discussion and Related Work

	Program Transformation
	Towards a Normal Form for Mercury Programs
	Introduction and Motivation
	Mercury Preliminaries
	Transformation to Normal Form
	Detecting Duplicated Functionality and Experimental Results
	Discussion and Further Work

	Aggregates for CHR through Program Transformation
	Introduction
	Preliminaries: Constraint Handling Rules
	Syntax of CHR
	Operaional Semantics of CHR

	Extending CHR with Aggregates
	Motivation and Running Example
	An Extensible Framework for Aggregates in CHR
	Formal Operational Semantics

	Implementation through Program Transformation
	Meta CHR Rules
	On-Demand Aggregate Computation
	Incremental Aggregate Computation

	Discussion and Evaluation
	Conclusion and Future Work

	Preserving Sharing in the Partial Evaluation of Lazy Functional Programs
	Introduction
	Preliminaries
	Partial Evaluation of Lazy Functional Programs
	The Standard Semantics
	The Partial Evaluation Semantics
	Extracting Residual Rules
	Correctness

	Partial Evaluation in Practice
	Discussion

	Denotation by Transformation Towards Obtaining a Denotational Semantics by Transformation to Point-Free Style
	Introduction
	Functional Logic Programming Languages

	Transformation to Point- ree Style By Example
	Obtaining Point-Free Style in General
	The Core Language and the Reference Semantics
	Transformation to Strict Programs
	Transformation to Point-Free Style

	Related and Future Work
	References

	Constraint Solving and Analysis
	Generation of Rule-Based Constraint Solvers: Combined Approach
	Introduction
	Generate and Test Method
	Symbolic Construction Method
	Combined Approach
	Conclusion

	A Scalable Inclusion Constraint Solver Using Unification
	Introduction
	Related Works
	Inclusion Constraint Language
	Interpretation Using Type Variables
	Constraint Solving
	Case Study: Reaching Definitions Analysis
	Benchmarks: Representative Programs
	Benchmarks: Scalable Programs

	Conclusion
	References

	Annotation Algorithms for Unrestricted Independent And-Parallelism in Logic Programs
	Introduction
	Background and Motivation
	$Fork-Join$-Style Parallelization
	Parallelization with Finer Goal-Level Operators

	TheUOUDG and UUDG Algorithms
	Collapsing Mutually Dependent Goals
	Order-Preserving Annotation: The UOUDG Algorithm
	Non Order-Preserving Annotation: The UUDG Algorithm

	Performance Evaluation
	Conclusions

	A Flexible, (C)LP-Based Approach to the Analysis of Object-Oriented Programs
	Introduction
	Methodology: The Transformational Approach
	Overview of the Semantic Basis and Correctness of the Transformation Phase
	Correctness of a Virtual Invocation

	Other (Meta-)Information Added by the Transformation
	Explicit Semantics in other OO Languages
	Experimental Results
	Related Work
	Conclusions and Future Work

	Software Engineering
	Snapshot Generation in a Constructive Object-Oriented Modeling Language
	Introduction
	CooML Specifications
	Formal Definitions

	A Snapshots Generation Algorithm and Its Theory
	Consistency Checking
	Validating Specifications Via SG
	A Schematic Algorithm

	Related Work and Conclusion

	Synthesis of Data Views for Communicating Processes
	Introduction
	Architectures with Data Views
	Specification of System Architectures
	Deductive System
	Extraction
	Related Work and Conclusions

	Action Refinement in Process Algebra and Security Issues
	Introduction
	The SPA Language
	Action Refinement
	Action Refinement for SPA Processes
	Compositionality

	Preserving Security Properties under Refinement
	Security Properties
	Classes of Secure Processes Closed under Action Refinement

	Conclusions and Related Works

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

